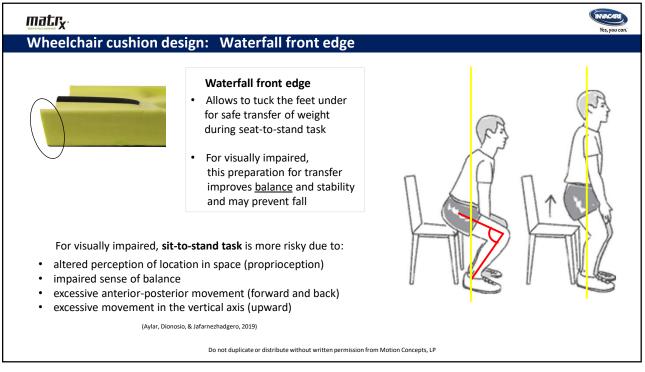
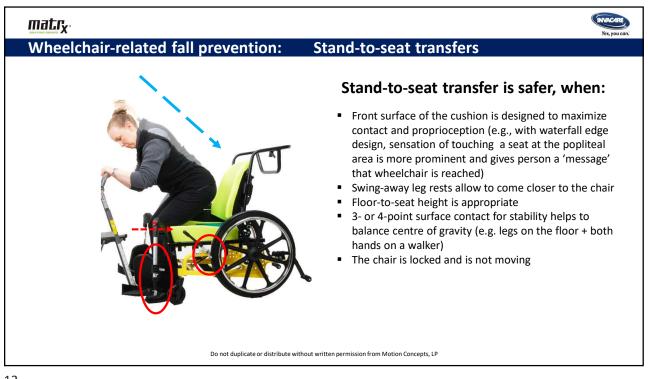

Activity at time of fallNumber of falls (%)Men (N=231)Women (N=231)Walking29.240.3
Walking 29.2 40.3
Standing 25.0 23.8
Sitting down or lowering 15.9 14.3
Seated or wheeling 15.5 11.5
Getting up or rising 14.4 10.2
Slip 0.9 0.9


British Columbia LTC falls study: How do peo	ple fall?	
Falls captured on video in long-term care (N=529 (Yang et a	•	
Falls while getting up		
40% were associated with moving objects and loss of supportmost often due to	Number of falls suf	fered:
incorrect shift of body weight or		
excessive sway of the trunk	Number of falls	% of participants (N=529
	1	46 %
Falls while seated	2	20 %
	3	10 % 6 %
 most often due to loss of support associated with 	5 or more	18%
moving object (60%) or	b of more	10 / 10
sliding out of a chair (40%)		



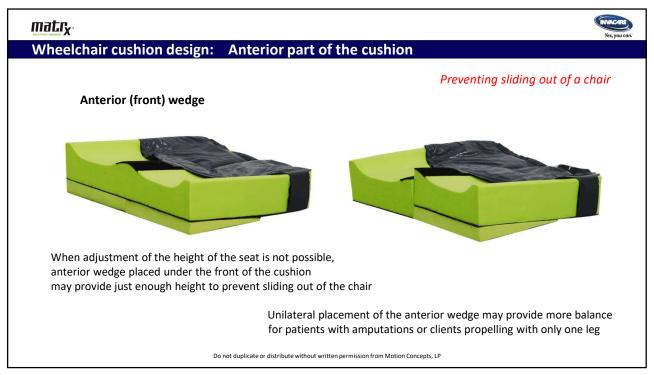
prioception: Why is incorrect shift (of body weight so common in seniors?
Proprioception is <u>worsened</u> with:	Proprioception is <i>improved</i> with:
 Aging (changes in muscles and nerves) Visual changes Surgical interventions in joints Arthritis or other pathological changes Injections into the joints Neuropathy Prolonged vibration Immediately after intensive exercise Spatial neglect or 'pusher syndrome' (changes in processing visual input after CVA/strokes) 	 Improvements in vision Regular balance training on unstable surface Short-term vibration Sensation of touching a surface/object 3-point or 4-point surface contact (e.g. back of the legs + both hands on armrests) Balanced posture of the trunk
 Low back pain (reliance on trunk proprioception with decline of proprioception in legs) Simultaneous demand for cognitive attention to dynamic postural control 	(Haibach, Slobounov, & Newell, 2009; Karnath & Broetz, 2003; Nishio et al., 2019; Toosizadeh, Ehsani, Miramonte, & Mohler, 2018; Vermette et al., 2019)

Falling while being seated or wheeled: sliding out of the wheelchair Posture – related? Wheelchair – related? Wheelchair seating - related? Image: Comparison of the wheelchair

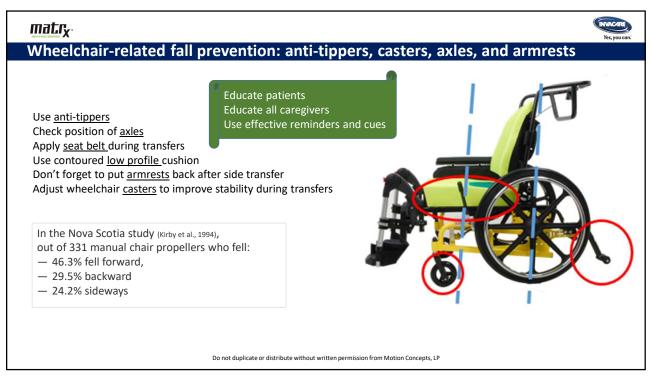
Or all the above?

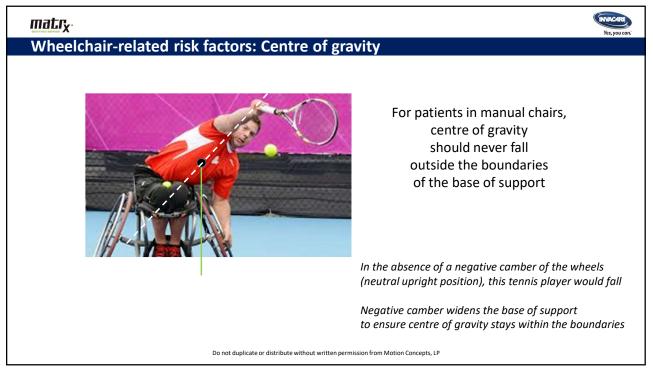
matrx

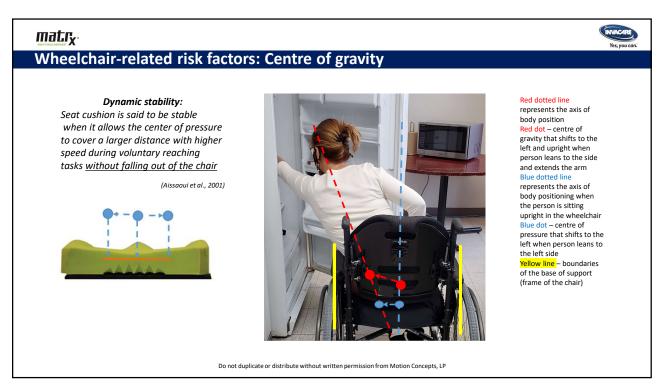
- 1. Assess patient (mat assessment)
- Assess the wheelchair
 Start from the seat, then look at the back, then the rest of the wheelchair system
- Change one thing a time and assess postural changes

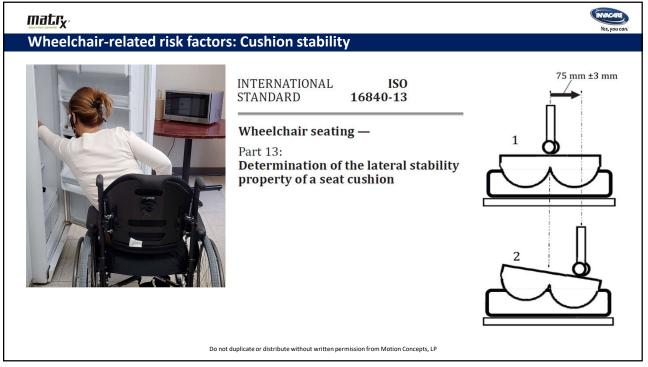


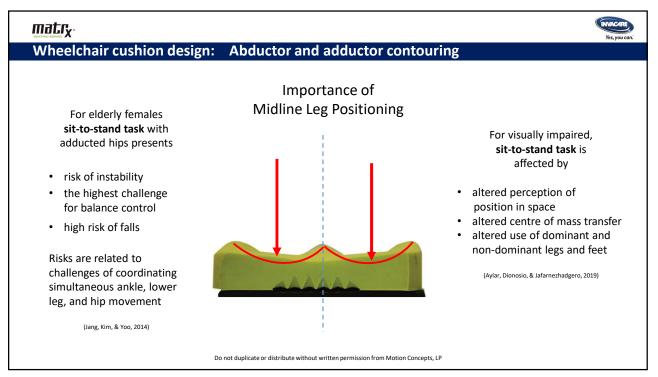


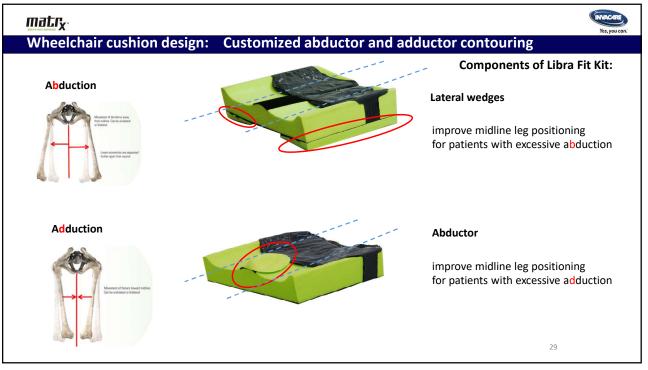


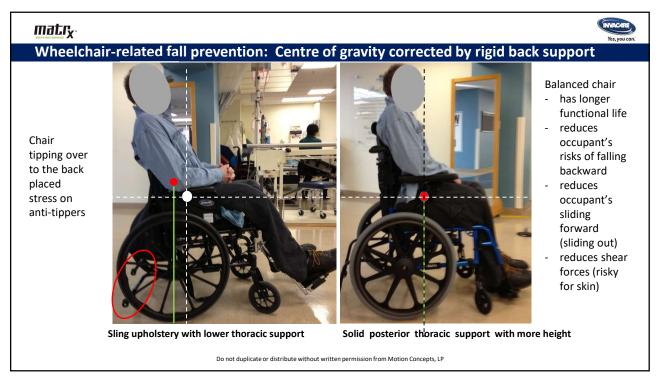


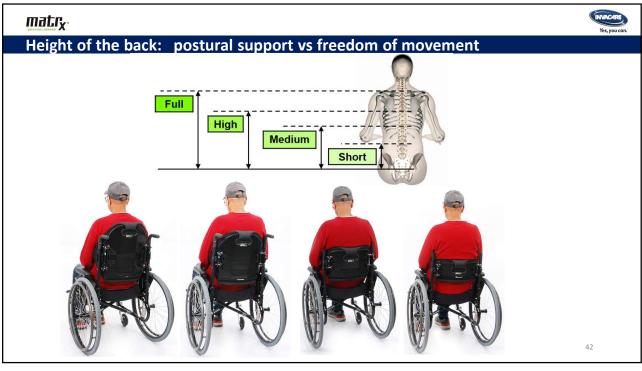


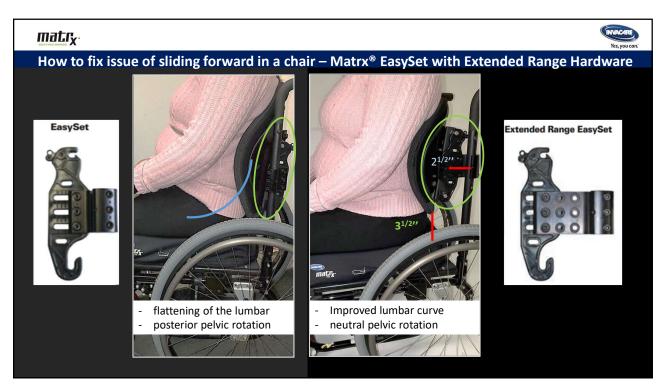


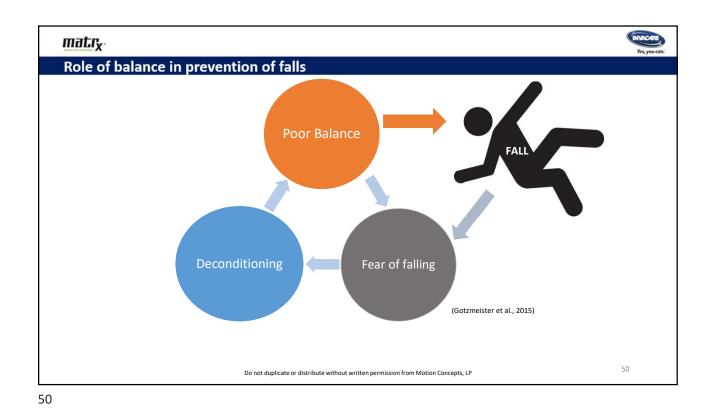


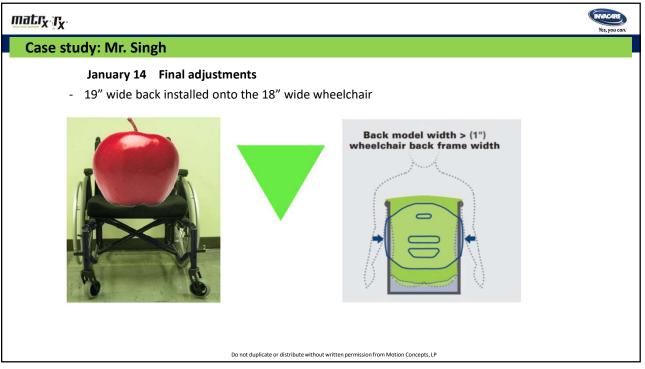




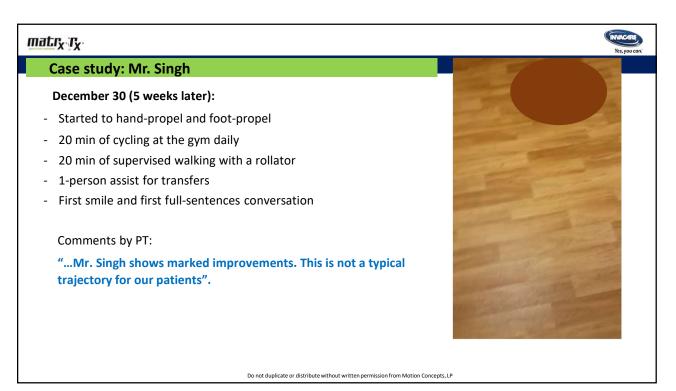


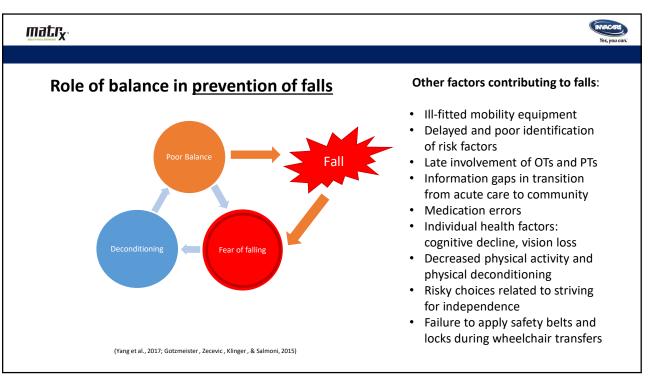


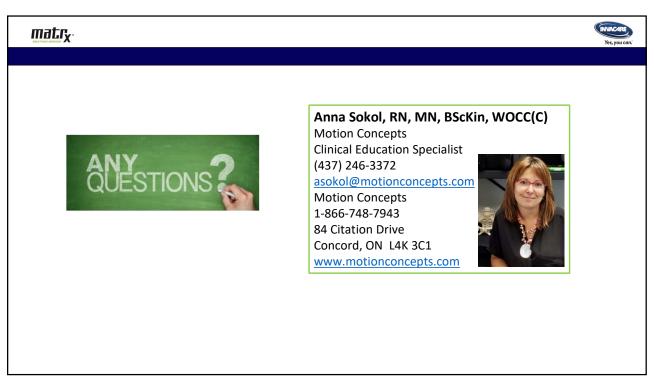



matr _x r _x	Yes, you can.
	Case study: Mr. Singh
	Addressing fear of falling
	• Mr. Singh is 92 years old
	• 5 unexplained falls within 6 months
	Refusal to mobilize due to fear of falling
	Admitted to the hospital with failure to thrive
	• Treated for multiple blood clots in lower limbs, PE, and diabetes.
	 After 2 months, d/c to LTC with extreme muscle wasting, frailty, urinary incontinence
	Referred to the ADP-prescriber for a wheelchair (2 week wait)
Do not duplicate	or distribute without written permission from Motion Concepts, LP 48

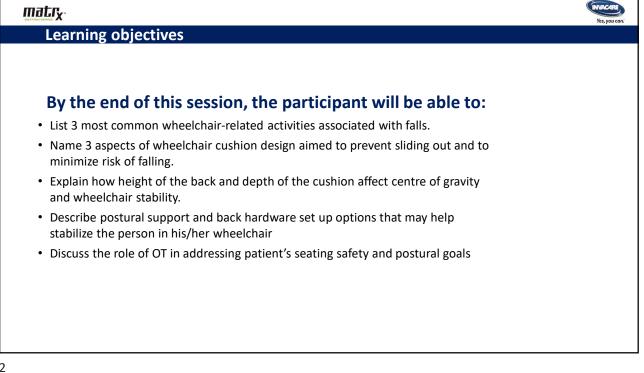
matr _x .T _x	Vers, you can:
	 Case study: Mr. Singh November 21: LTC home provided a loaner lightweight manual chair with rigid contoured back air cushion no seat cushion rigidizer Mr. Singh was sliding forward due to seat-to-floor too high After 1 week of trying, physiotherapy team requested a consult: Mr. Singh was not getting up or propelling the wheelchair wasn't communicating
Do not duplicate	e or distribute without written permission from Motion Concepts, LP 49

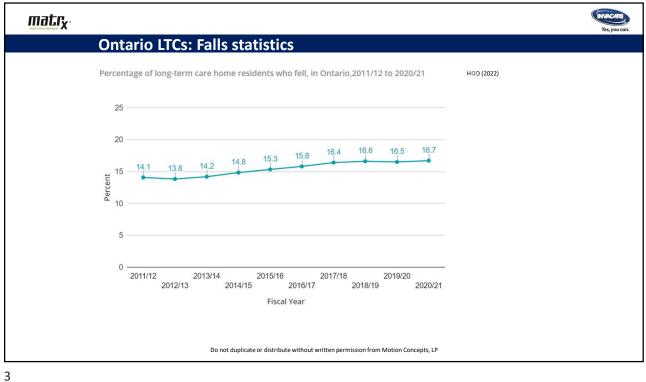

matr_x r_x


Case study: Mr. Singh

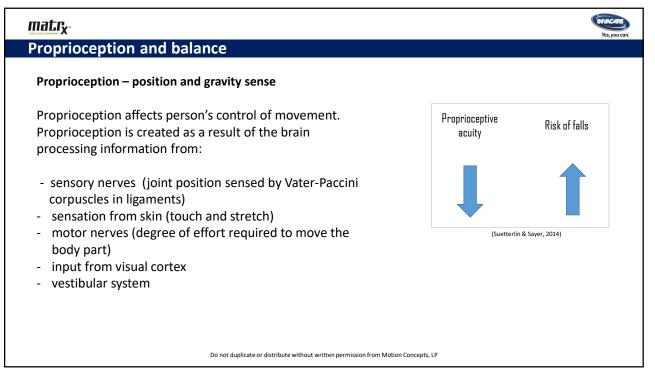

Seating products that worked:

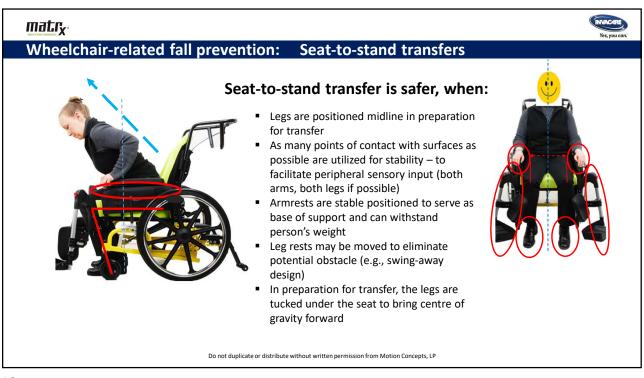
- Proper size (18") w/c frame
- Stable skin protection & positioning cushion (1818)
- Gently contoured back 1" wider than chair frame (1918)
- Head support with adjustable mounting hardware

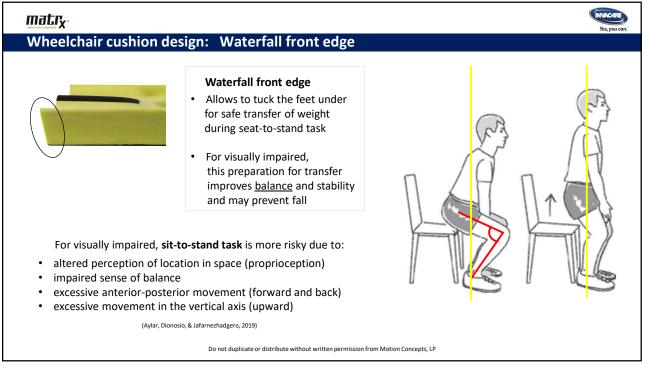


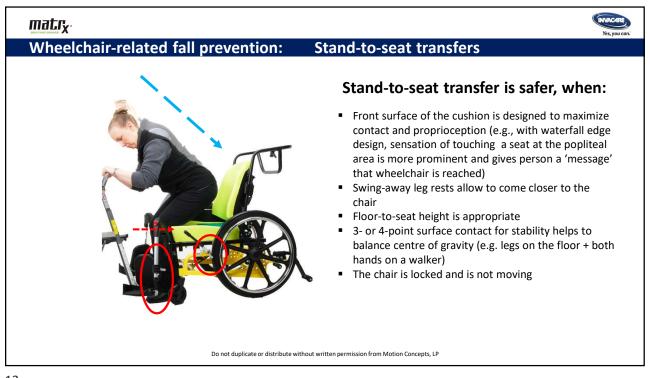


	References:
•	Alssaoui, R., Boucher, C., Bourbonnais, D., Lacoste, M., & Dansereau, J. (2001). Effect of seat cushion on dynamic stability in sitting during a reaching task in wheelchair users with paraplegia. Archives of Physical Medicine ond Rehabilitation, 82, 274-281. doi: 10.1053/apmr.2001.19473
•	Aylar, M. F., Dionosio, V. C. & Jafarnezhadgero, A. A. (2019). Do the centre of mass strategies change with restricted vision during the sit-to stand task? Clinical Biomechanics, 62, 104-112.
•	Erickson, B., Hosseini, M. A., Mudhar, P. S., Soleimani, M., Aboonabi, A., Arzanpour, S., & Sparrey, C. J. (2016). The dynamics of electric powered wheelchair sideways tips and falls: experimental and computational analysis of impact forces and injury. Journal of Neuro Engineering and Rehabilitation, 13(20). doi: 10.1186/s12984-016-0128-7
•	Forslund, E.B., Jorgensen, V., Franzen, E., Opheim, A., et al. (2017). High incidence of falls and fall-related injuries in wheelchair users with spinal cord injury: a prospective study of risk indicators. Journal of Rehabilitation Medicine, 49, 144- 151. doi: 10.2340/16501977-2177
·	Gotzmeister, D., Zecevic, A. A., Klinger, L., & Salmoni, A. (2015). "People are getting lost a little bit": systemic factors that contribute to falls in community-dwelling octogenarians. Canadian Journal of Aging, 34(3), 397-410. doi: 10.1017/S071498081500015X
•	Haibach, P., Slobounov, S., & Newell, K. (2009). Egomotion and vection in young and elderly adults. Gerontology, 55(6), 637–643. https://doi.org/10.1159/000235816
•	HQO (Health Quality Ontario). (2022). Long-Term Care Home Performance: Falls. https://www.hqontario.ca/System-Performance/Long-Term-Care-Home-Performance/Falls
•	HQO (Health Quality Ontario). (2017). Insights into Quality Improvement: Home care Impressions and observations: 2016/2017 Quality Improvement Plans. Retrieved January 6, 2020, from: http://www.hqontario.ca/Portals/0/documents/qi/qip/analysis-home-care-2016-17-en.pdf
•	Jang, E. M., Kim, MH., Yoo, W. G. (2014). Comparison of the tibialis anterior and soleus muscles activities during the sit-to-stand movement with hip adduction and hip abduction in elderly females. Journal of Physical Therapy Science, 26(7), 1045-7. doi: 10.1589/jpts.26.1045
•	Karnath, HO., & Broetz, D. (2003). Understanding and treating "pusher syndrome." Physical Therapy, 83(12), 1119–1125. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=mdc&AN=14640870&site=ehost-live
•	Kirby, R. L., Ackroyd-Stolarz, S. A., Brown, M. G., Kirkland, S. A., & MacLeod, D. A. (1994). Wheelchair-related accidents caused by tips and falls among noninstitutionalized users of manually propelled wheelchairs in Nova Scotia. American Journal Of Physical Medicine & Rehabilitation, 73(5), 819-330.
•	Nishio, R., Yohei, I., Morita Y., Ito, T., Yamazaki, K., & Sakai, Y. (2019). Investigation of the functional decline in proprioceptors for low back pain using the sweep frequency. Applied Science, 9, 4988. doi:10.3390/app9234988
•	Okunribido, O. O. (2013). Patient safety during assistant propelled wheelchair transfers: the effect of the seat cushion on risk of falling. Assistive Technology, 25, 1-8. doi: 10.1080/10400435.2012.680658
•	Suetterlin, K. J. & Sayer, A. A. (2014). Proprioception: where are we now? A commentary in clinical assessment, changes across the life course, functional implications and future interventions. Age Ageing, 43(3), 313-318. doi: 10.1093/ageing/aft174
•	Toosizadeh, N., Ehsani, H., Miramonte, M., & Mohler, J. (2018). Proprioceptive impairments in high fall risk older adults: the effect of mechanical calf vibration on postural balance. Biomedical Engineering Online, 17:51.doi: 10.1186/s12938-018-0482-8
•	Varriano, B., Sulway, S., Wetmore, C., Dillon, W., Misquitta, K., Multani, N., & Rutka, J. (2021). Prevalence of cognitive and vestibular impairments in seniors experiencing falls. Canadian Journal of Neurological Sciences, 48(2), 245 – 252.
•	doi: https://doi.org/10.1017/cjn.2020.154
•	Vermette, MJ., Prince, F., Bherer, L., & Messier, J. (2019). Interaction between proprioceptive sensitivity and the attentional demand for dynamic postural control in sedentary seniors: A pilot study. Neurophysilologie Clinique, 49(6), 423-426. doi: 10.1016/j.neucl.2019.10.047
•	Yang, K. S., van Schooten, J. Sims-Gould, H. A. McKay, F. Feldman, & S. N. Robinovitch. (2017). Sex differences in the circumstances leading to falls: Evidence from real-life falls captured on video in long-term care. Journal of the American Medical Directors Association, 1-6. doi: 10.1016/j.jamda.2017.08.011
•	Yap L. K., Au, S. Y., Ang., Y. H., & Ee C. H. (2003). Nursing home falls: a local perspective. Annals of the Academy of Medicine, Singapore, 32(6), 795 – 800.




Activity at time of fallNumber of falls (%)Men (N=231)Women (N=231)Walking29.240.3
Walking 29.2 40.3
Standing 25.0 23.8
Sitting down or lowering 15.9 14.3
Seated or wheeling 15.5 11.5
Getting up or rising 14.4 10.2
Slip 0.9 0.9


British Columbia LTC falls study: How do peo	ple fall?	
Falls captured on video in long-term care (N=529 (Yang et a	•	
Falls while getting up		
40% were associated with moving objects and loss of supportmost often due to	Number of falls suf	fered:
incorrect shift of body weight or		
excessive sway of the trunk	Number of falls	% of participants (N=529
	1	46 %
Falls while seated	2	20 %
	3	10 % 6 %
 most often due to loss of support associated with 	5 or more	18%
moving object (60%) or	5 of more	10 /0
sliding out of a chair (40%)		



prioception: Why is incorrect shift	of body weight so common in seniors?
Proprioception is <u>worsened</u> with:	Proprioception is <i>improved</i> with:
 Aging (changes in muscles and nerves) Visual changes Surgical interventions in joints Arthritis or other pathological changes Injections into the joints Neuropathy Prolonged vibration Immediately after intensive exercise Spatial neglect or 'pusher syndrome' (changes in processing visual input after CVA/strokes) Low back pain 	 Improvements in vision Regular balance training on unstable surface Short-term vibration Sensation of touching a surface/object 3-point or 4-point surface contact (e.g. back of the legs + both hands on armrests) Balanced posture of the trunk
 Low back pain (reliance on trunk proprioception with decline of proprioception in legs) Simultaneous demand for cognitive 	(Haibach, Slobounov, & Newell, 2009; Karnath & Broetz, 2003; Nishio et al., 2019; Toosizadeh, Ehsani, Miramonte, & Mohler, 2018; Vermette et al., 2019)

matr_x

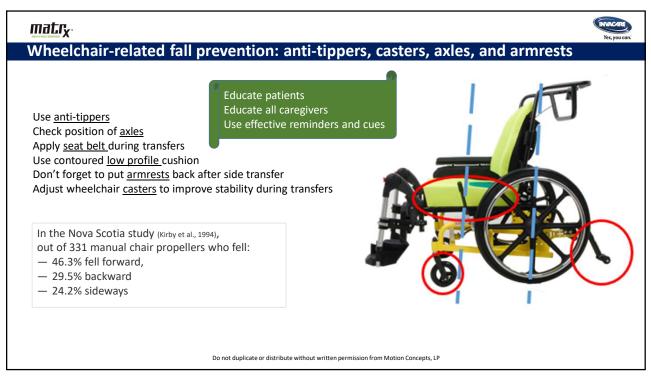
Falling while being seated or wheeled: sliding out of the wheelchair

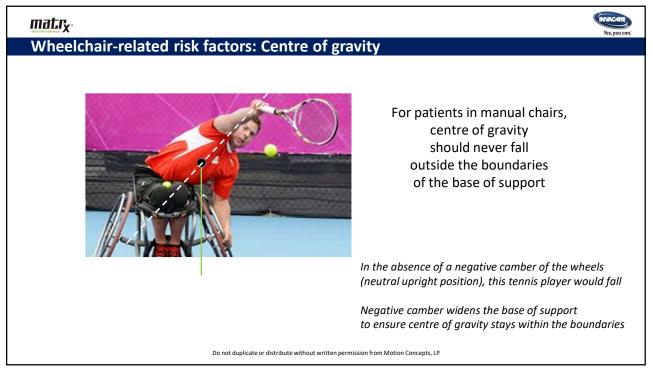
Posture – related? Wheelchair – related? Wheelchair seating - related?

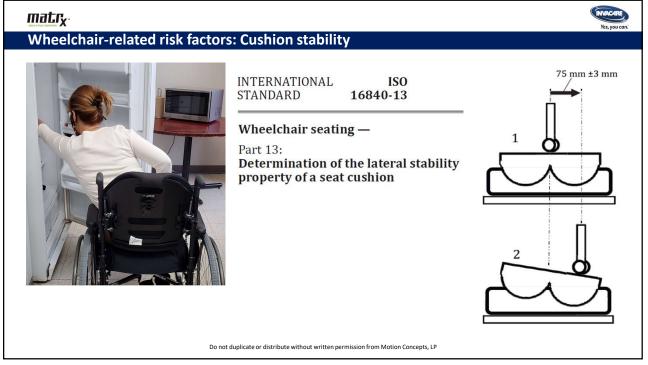
Or all the above?

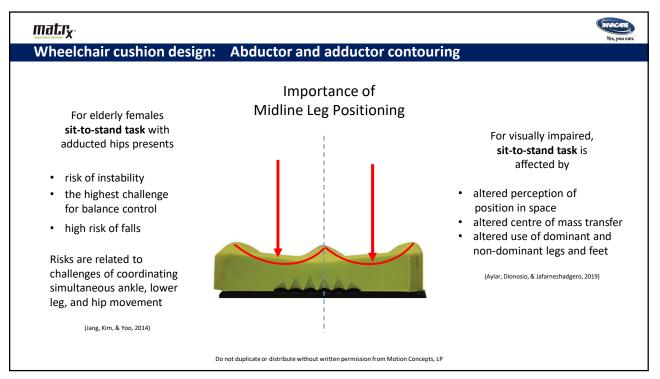
- 1. Assess patient (mat assessment)
- Assess the wheelchair
 Start from the seat, then look at the back, then the
- rest of the wheelchair system
 Change one thing a time and
- assess postural changes

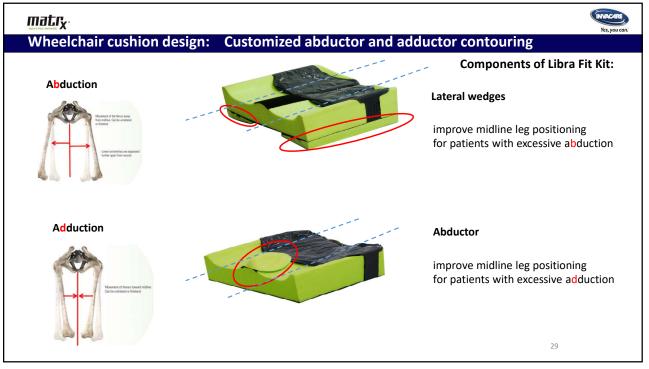


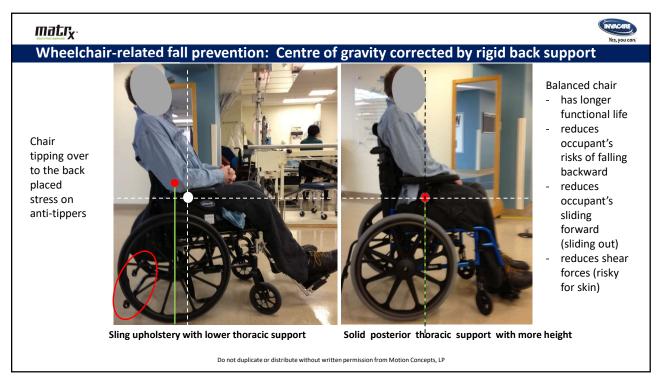


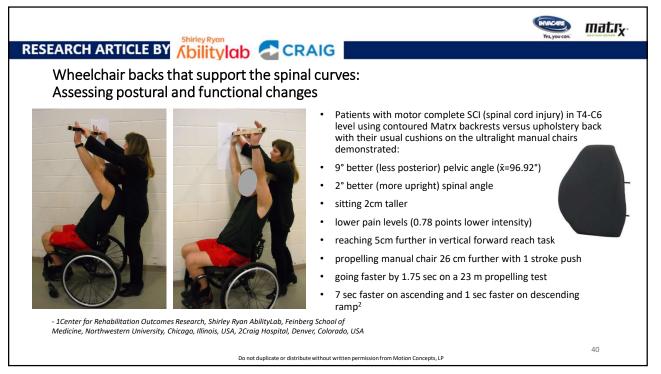


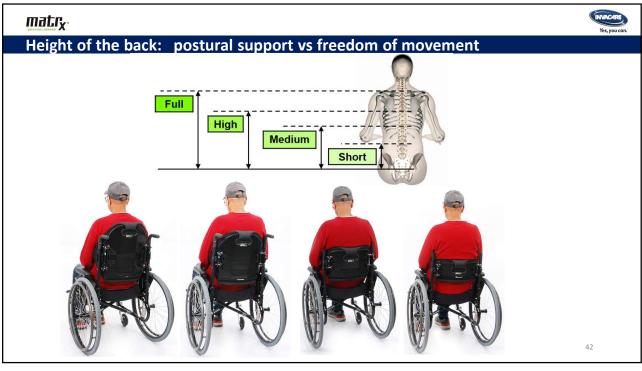


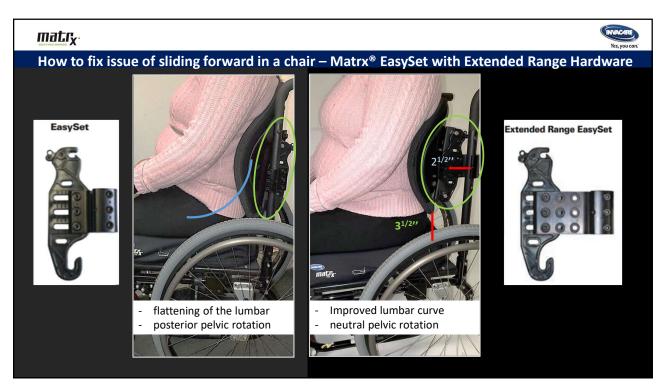


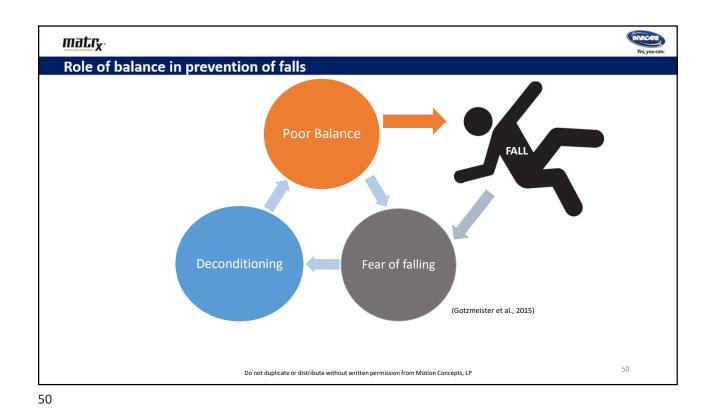


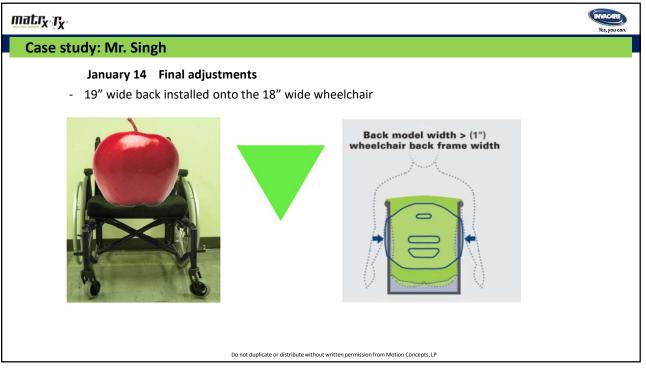






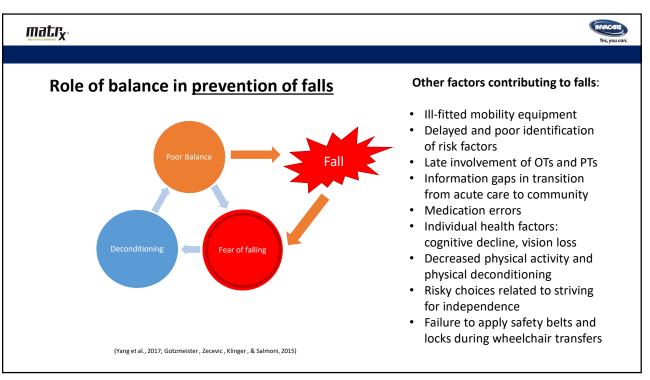


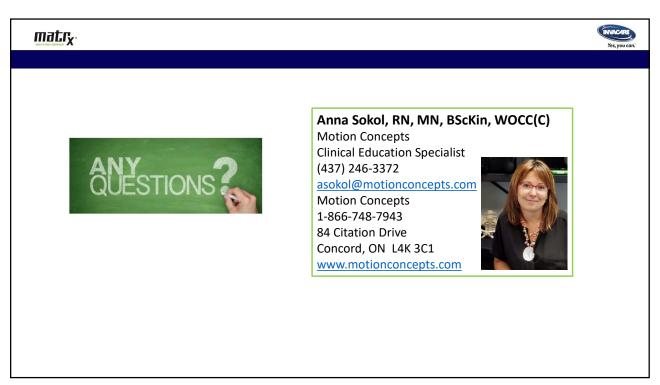



	Case study: Mr. Singh
	Addressing fear of falling
	Mr. Singh is 92 years old
	5 unexplained falls within 6 months
	Refusal to mobilize due to fear of falling
	Admitted to the hospital with failure to thrive
	Treated for multiple blood clots in lower limbs, PE, and diabetes.
	 After 2 months, d/c to LTC with extreme muscle wasting, frailty, urinary incontinence
	Referred to the ADP-prescriber for a wheelchair (2 week wait)
Do not duplicat	e or distribute without written permission from Motion Concepts, LP 48

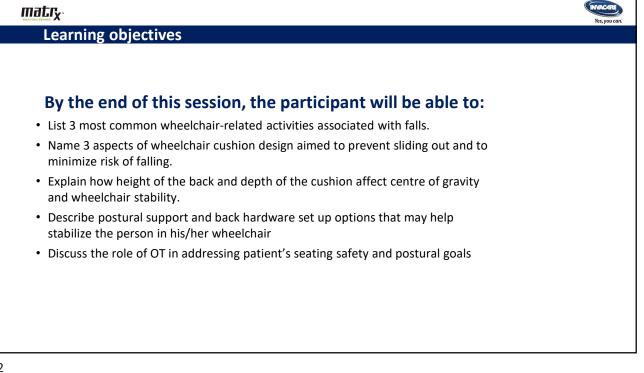
matr _x . r _x .	Yes, you can:
	 Case study: Mr. Singh November 21: LTC home provided a loaner lightweight manual chair with rigid contoured back air cushion no seat cushion rigidizer Mr. Singh was sliding forward due to seat-to-floor too high After 1 week of trying, physiotherapy team requested a consult: Mr. Singh was not getting up or propelling the wheelchair wasn't communicating
Do not duplicate	e or distribute without written permission from Motion Concepts, LP 49

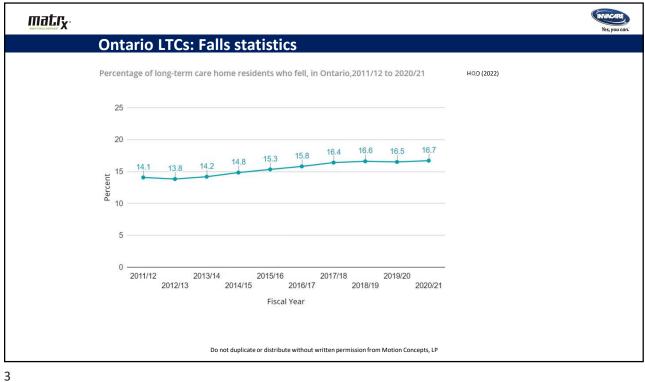

matr_x r_x


Case study: Mr. Singh

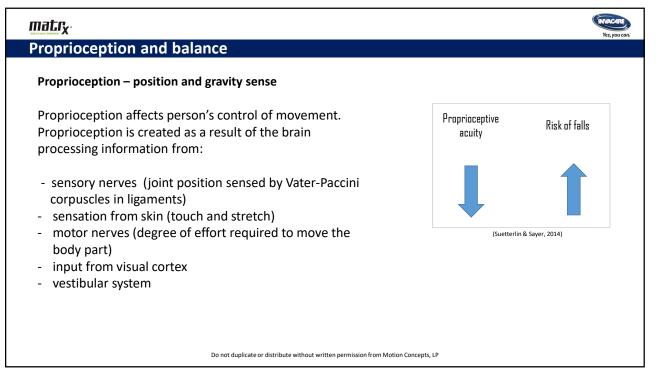

Seating products that worked:

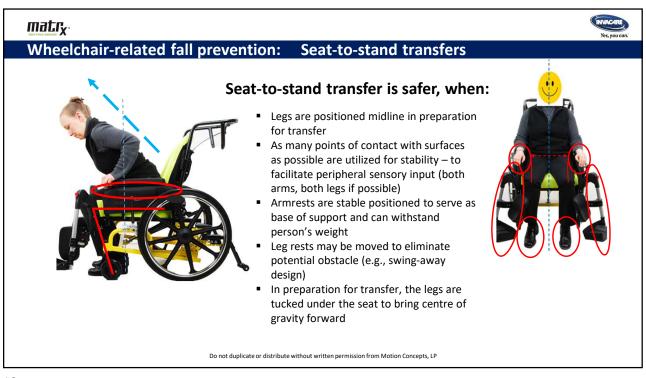
- Proper size (18") w/c frame
- Stable skin protection & positioning cushion (1818)
- Gently contoured back 1" wider than chair frame (1918)
- Head support with adjustable mounting hardware

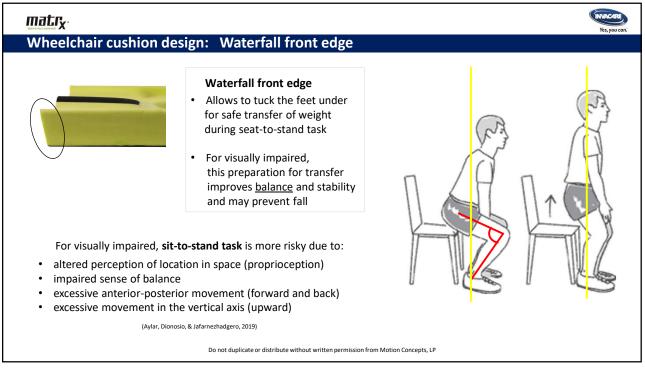


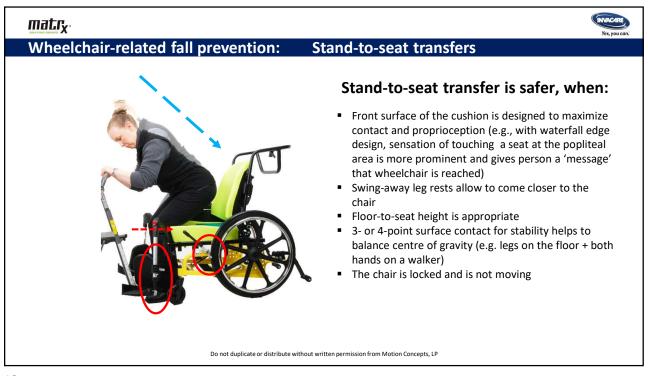


matrx	Yes, you can:	
References:		
 Aissaoui, R., Boucher, C., Bourbonnais, D., Lacoste, M., & Dansereau, J. (2001). Effect of seat cushion on dynamic stability in sitting during a reaching task in wheelchair users with paraplegia. Archives of Physical M 82, 274-281. doi: 10.1053/apmr.2001.19473 	ledicine and Rehabilitation,	
• Aylar, M. F., Dionosio, V. C. & Jafarnezhadgero, A. A. (2019). Do the centre of mass strategies change with restricted vision during the sit-to stand task? Clinical Biomechanics, 62, 104-112.		
 Erickson, B., Hosseini, M. A., Mudhar, P. S., Soleimani, M., Aboonabi, A., Arzanpour, S., & Sparrey, C. J. (2016). The dynamics of electric powered wheelchair sideways tips and falls: experimental and computationa and injury. Journal of Neuro Engineering and Rehabilitation, 13(20). doi: 10.1186/s12984-016-0128-7 	al analysis of impact forces	
 Forslund, E.B., Jorgensen, V., Franzen, E., Opheim, A., et al. (2017). High incidence of falls and fall-related injuries in wheelchair users with spinal cord injury: a prospective study of risk indicators. Journal of Rehabi 151. doi: 10.2340/16501977-2177 	litation Medicine, 49, 144-	
 Gotzmeister, D., Zecevic, A. A., Klinger, L., & Salmoni, A. (2015). "People are getting lost a little bit": systemic factors that contribute to falls in community-dwelling octogenarians. Canadian Journal of Aging, 34(3), 10.1017/S071498081500015X 	397-410. doi:	
 Haibach, P., Slobounov, S., & Newell, K. (2009). Egomotion and vection in young and elderly adults. Gerontology, 55(6), 637–643. https://doi.org/10.1159/000235816 		
HQO (Health Quality Ontario). (2022). Long-Term Care Home Performance: Falls. https://www.hqontario.ca/System-Performance/Long-Term-Care-Home-Performance/Falls		
 HQO (Health Quality Ontario). (2017). Insights into Quality Improvement: Home care Impressions and observations: 2016/2017 Quality Improvement Plans. Retrieved January 6, 2020, from: http://www.hqontario.ca/Portals/0/documents/qi/qip/analysis-home-care-2016-17-en.pdf 		
 Jang, E. M., Kim, MH., Yoo, W. G. (2014). Comparison of the tibialis anterior and soleus muscles activities during the sit-to-stand movement with hip adduction and hip abduction in elderly females. Journal of Phy 1045-7. doi: 10.1589/jpts.26.1045 	sical Therapy Science, 26(7),	
• Karnath, HO., & Broetz, D. (2003). Understanding and treating "pusher syndrome." Physical Therapy, 83(12), 1119–1125. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=mdc&AN=1464	0870&site=ehost-live	
 Kirby, R. L., Ackroyd-Stolarz, S. A., Brown, M. G., Kirkland, S. A., & MacLeod, D. A. (1994). Wheelchair-related accidents caused by tips and falls among noninstitutionalized users of manually propelled wheelchairs i Journal Of Physical Medicine & Rehabilitation, 73(5), 319-330. 	in Nova Scotia. American	
• Nishio, R., Yohei, I., Morita Y., Ito, T., Yamazaki, K., & Sakai, Y. (2019). Investigation of the functional decline in proprioceptors for low back pain using the sweep frequency. Applied Science, 9, 4988. doi:10.3390/ap	p9234988	
Okunribido, O. O. (2013). Patient safety during assistant propelled wheelchair transfers: the effect of the seat cushion on risk of falling. Assistive Technology, 25, 1-8. doi: 10.1080/10400435.2012.680658		
 Suetterlin, K. J. & Sayer, A. A. (2014). Proprioception: where are we now? A commentary in clinical assessment, changes across the life course, functional implications and future interventions. Age Ageing, 43(3), 3 10.1093/ageing/aft174 	13-318. doi:	
 Toosizadeh, N., Ehsani, H., Miramonte, M., & Mohler, J. (2018). Proprioceptive impairments in high fall risk older adults: the effect of mechanical calf vibration on postural balance. Biomedical Engineering Online, 3 018-0482-8 	17:51.doi: 10.1186/s12938-	
• Varriano, B., Sulway, S., Wetmore, C., Dillon, W., Misquitta, K., Multani, N., & Rutka, J. (2021). Prevalence of cognitive and vestibular impairments in seniors experiencing fails. Canadian Journal of Neurological S	ciences , 48(2), 245 – 252.	
doi: https://doi.org/10.1017/cjn.2020.154		
 Vermette, MJ., Prince, F., Bherer, L., & Messier, J. (2019). Interaction between proprioceptive sensitivity and the attentional demand for dynamic postural control in sedentary seniors: A pilot study. Neurophysilo 426. doi: 10.1016/j.neucl.2019.10.047 	ologie Clinique, 49(6), 423-	
 Yang, K. S., van Schooten, J. Sims-Gould, H. A. McKay, F. Feldman, & S. N. Robinovitch. (2017). Sex differences in the circumstances leading to falls: Evidence from real-life falls captured on video in long-term care Medical Directors Association, 1-6. doi: 10.1016/j.jamda.2017.08.011 	Journal of the American	
 Yap L. K., Au, S. Y., Ang., Y. H., & Ee C. H. (2003). Nursing home falls: a local perspective. Annals of the Academy of Medicine, Singapore, 32(6), 795 – 800. 		




Falls captured on video in long-ter	rm care (Yang et al., 202	7)
Activity at time of fall	Number of falls (%	
	Men (N=231)	Women (N=298)
Walking	29.2	40.3
Standing	25.0	23.8
Sitting down or lowering	15.9	14.3
Seated or wheeling	15.5	11.5
Getting up or rising	14.4	10.2
Slip	0.9	0.9


British Columbia LTC falls study: How do pe	ople fall?	
Falls captured on video in long-term care (N=52 (Yang	29) et al., 2017)	
 Falls while getting up 40% were associated with moving objects and loss of suppor most often due to 	rt Number of falls suf	fered:
incorrect shift of body weight or excessive sway of the trunk	Number of falls	% of participants (N=529
excessive sway of the trunk	1	46 %
	2	20 %
Falls while seated	3	10 %
- most often due to loss of support associated with	4	6 %
moving object (60%) or	5 or more	18 %
sliding out of a chair (40%)		



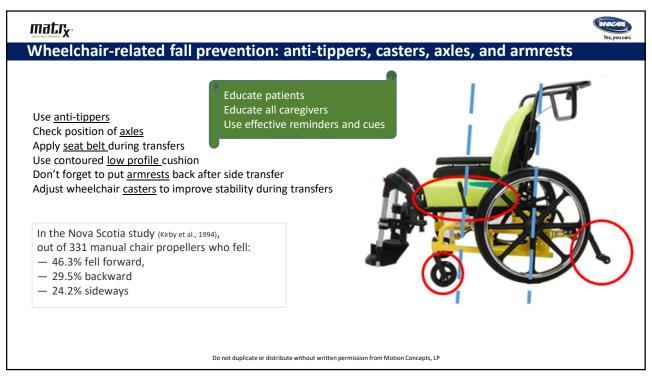
oprioception: Why is incorrect shift o	r body weight so common in seniors?
Proprioception is <u>worsened</u> with:	Proprioception is <i>improved</i> with:
 Aging (changes in muscles and nerves) Visual changes Surgical interventions in joints Arthritis or other pathological changes Injections into the joints Neuropathy Prolonged vibration Immediately after intensive exercise Spatial neglect or 'pusher syndrome' (changes in processing visual input after CVA/strokes) Iow back pain 	 Improvements in vision Regular balance training on unstable surface Short-term vibration Sensation of touching a surface/object 3-point or 4-point surface contact (e.g. back of the legs + both hands on armrests) Balanced posture of the trunk
 Low back pain (reliance on trunk proprioception with decline of proprioception in legs) Simultaneous demand for cognitive attention to dynamic postural control 	(Haibach, Slobounov, & Newell, 2009; Karnath & Broetz, 2003; Nishio et al., 2019; Toosizadeh, Ehsani, Miramonte, & Mohler, 2018; Vermette et al., 2019)

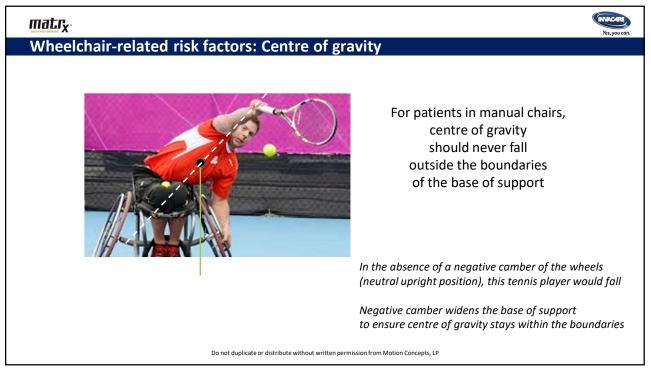
matrx Falling while being seated or wheeled: sliding out of the wheelchair Destroy and starts

Posture – related? Wheelchair – related? Wheelchair seating - related?

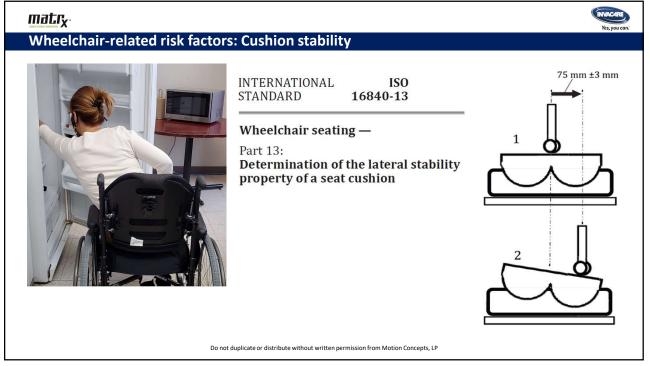
Or all the above?

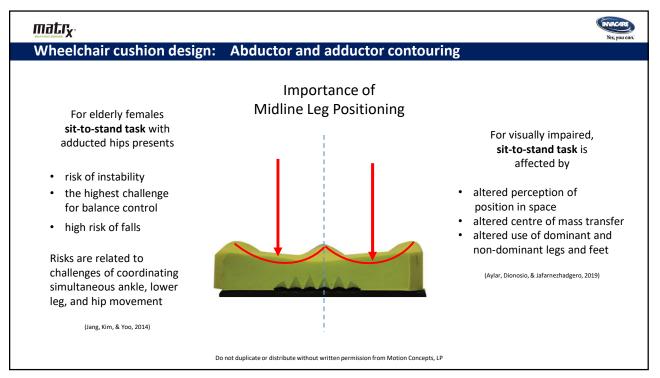
- 1. Assess patient (mat assessment)
- Assess the wheelchair
 Start from the seat, then look at the back, then the
- rest of the wheelchair system
 Change one thing a time and
- assess postural changes

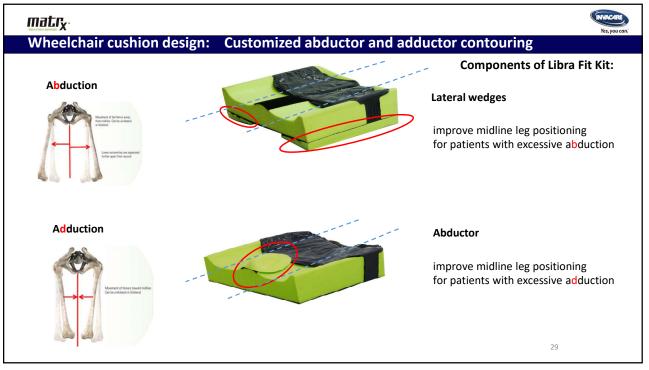


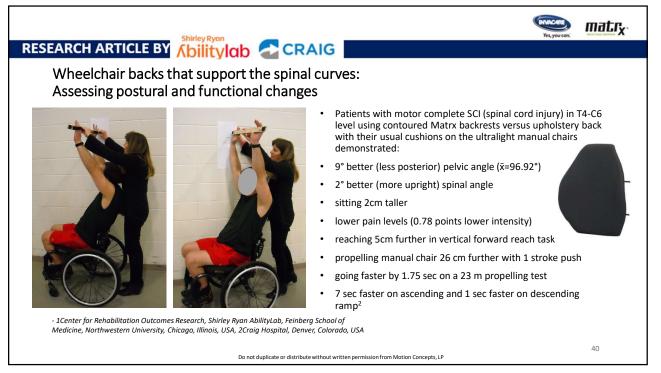


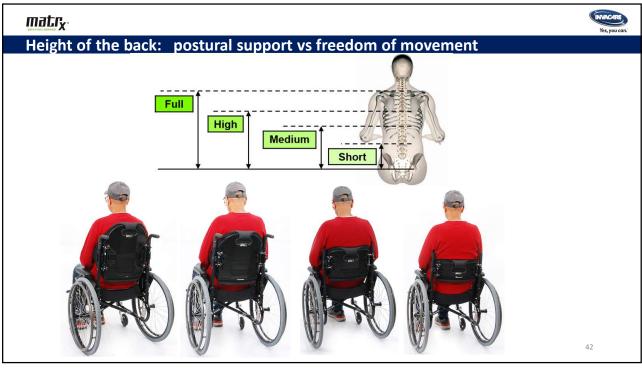


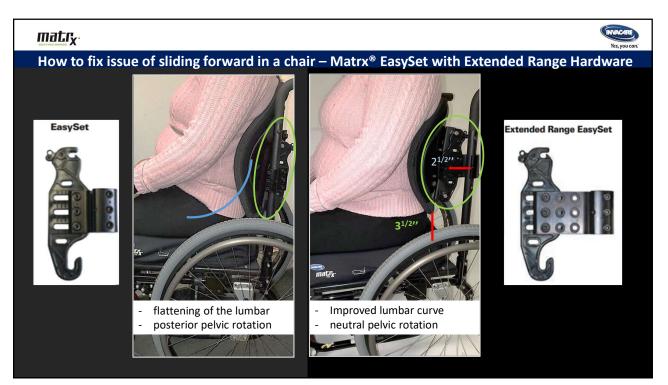


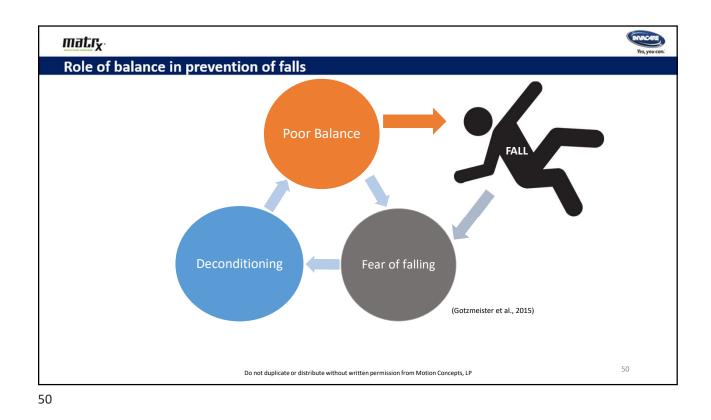


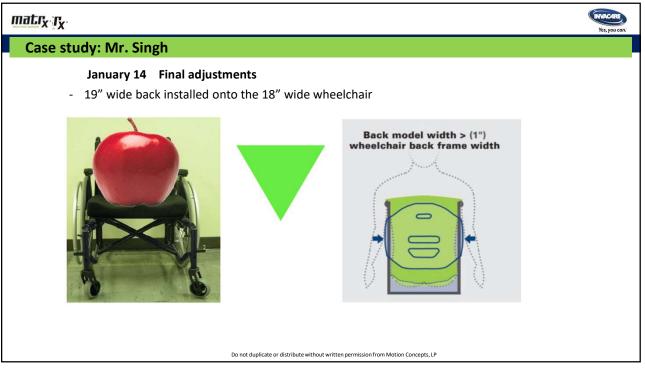




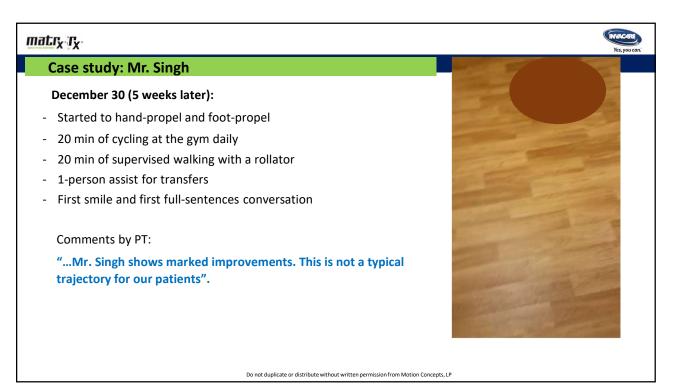


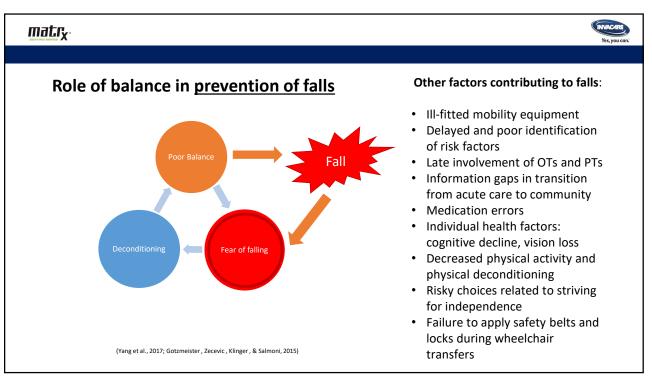


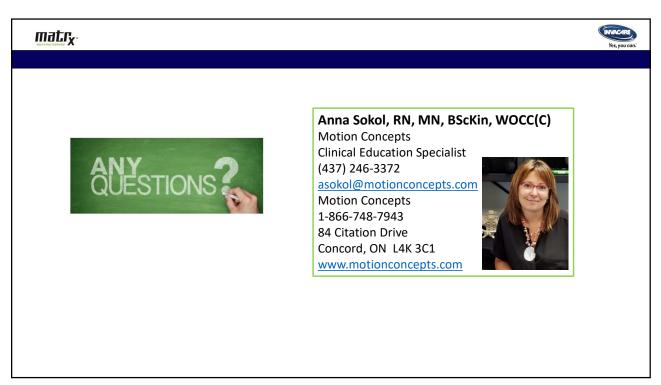



Case study: Mr. Singh Addressing fear of falling • Mr. Singh is 92 years old
Mr. Singh is 92 years old
 5 unexplained falls within 6 months
Refusal to mobilize due to fear of falling
Admitted to the hospital with failure to thrive
 Treated for multiple blood clots in lower limbs, PE, and diabetes.
 After 2 months, d/c to LTC with extreme muscle wasting, frailty, urinary incontinence
Referred to the ADP-prescriber for a wheelchair (2 week wait)
distribute without written permission from Motion Concepts, LP 48
1

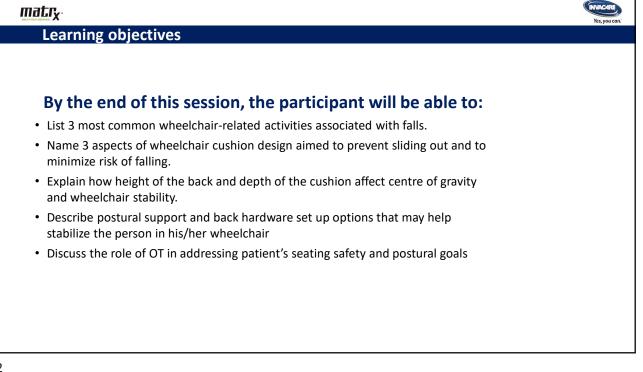
matr _x .T _x .	Yes, you can:
	Case study: Mr. Singh November 21: LTC home provided a loaner lightweight manual chair with rigid contoured back air cushion no seat cushion rigidizer Mr. Singh was sliding forward due to seat-to-floor too high After 1 week of trying, physiotherapy team requested a consult: Mr. Singh was not getting up or propelling the wheelchair Wasn't communicating
Do not duplicate	e or distribute without written permission from Motion Concepts, LP 4-2

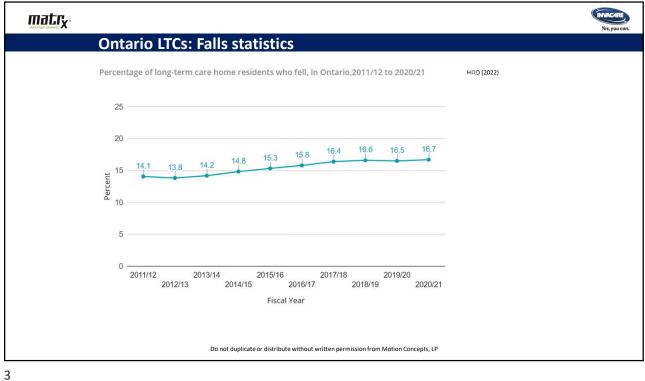

matr_x r_x


Case study: Mr. Singh

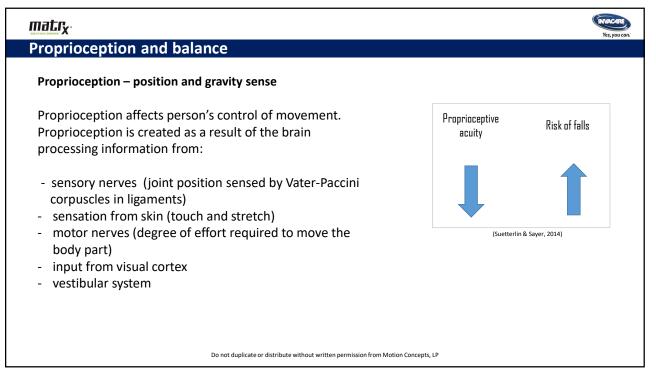

Seating products that worked:

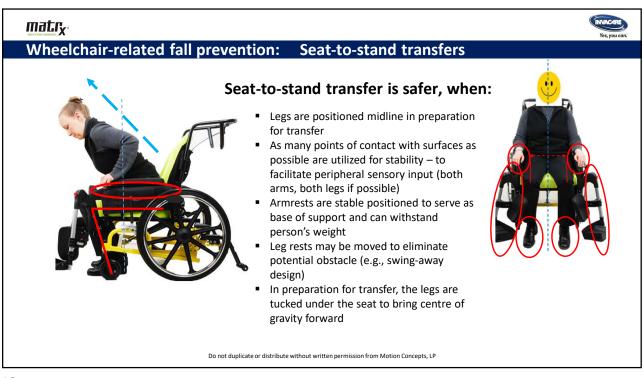
- Proper size (18") w/c frame
- Stable skin protection & positioning cushion (1818)
- Gently contoured back 1" wider than chair frame (1918)
- Head support with adjustable mounting hardware

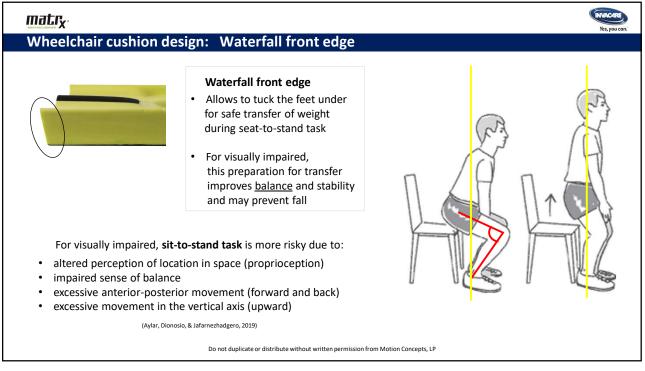


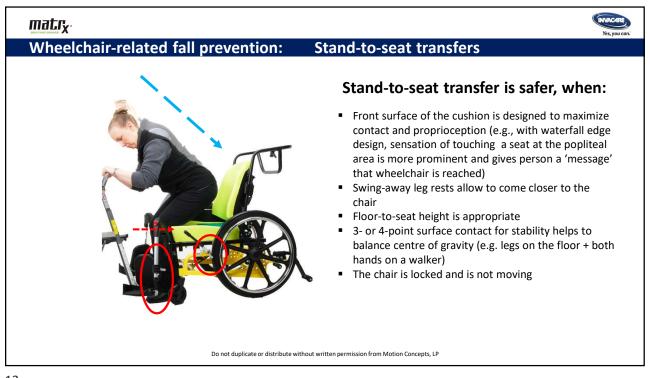


	References:
•	Alssaoui, R., Boucher, C., Bourbonnais, D., Lacoste, M., & Dansereau, J. (2001). Effect of seat cushion on dynamic stability in sitting during a reaching task in wheelchair users with paraplegia. Archives of Physical Medicine ond Rehabilitation, 82, 274-281. doi: 10.1053/apmr.2001.19473
•	Aylar, M. F., Dionosio, V. C. & Jafarnezhadgero, A. A. (2019). Do the centre of mass strategies change with restricted vision during the sit-to stand task? Clinical Biomechanics, 62, 104-112.
•	Erickson, B., Hosseini, M. A., Mudhar, P. S., Soleimani, M., Aboonabi, A., Arzanpour, S., & Sparrey, C. J. (2016). The dynamics of electric powered wheelchair sideways tips and falls: experimental and computational analysis of impact forces and injury. Journal of Neuro Engineering and Rehabilitation, 13(20). doi: 10.1186/s12984-016-0128-7
•	Forslund, E.B., Jorgensen, V., Franzen, E., Opheim, A., et al. (2017). High incidence of falls and fall-related injuries in wheelchair users with spinal cord injury: a prospective study of risk indicators. Journal of Rehabilitation Medicine, 49, 144- 151. doi: 10.2340/16501977-2177
·	Gotzmeister, D., Zecevic, A. A., Klinger, L., & Salmoni, A. (2015). "People are getting lost a little bit": systemic factors that contribute to falls in community-dwelling octogenarians. Canadian Journal of Aging, 34(3), 397-410. doi: 10.1017/S071498081500015X
•	Haibach, P., Slobounov, S., & Newell, K. (2009). Egomotion and vection in young and elderly adults. Gerontology, 55(6), 637–643. https://doi.org/10.1159/000235816
•	HQO (Health Quality Ontario). (2022). Long-Term Care Home Performance: Falls. https://www.hqontario.ca/System-Performance/Long-Term-Care-Home-Performance/Falls
•	HQO (Health Quality Ontario). (2017). Insights into Quality Improvement: Home care Impressions and observations: 2016/2017 Quality Improvement Plans. Retrieved January 6, 2020, from: http://www.hqontario.ca/Portals/0/documents/qi/qip/analysis-home-care-2016-17-en.pdf
•	Jang, E. M., Kim, MH., Yoo, W. G. (2014). Comparison of the tibialis anterior and soleus muscles activities during the sit-to-stand movement with hip adduction and hip abduction in elderly females. Journal of Physical Therapy Science, 26(7), 1045-7. doi: 10.1589/jpts.26.1045
•	Karnath, HO., & Broetz, D. (2003). Understanding and treating "pusher syndrome." Physical Therapy, 83(12), 1119–1125. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=mdc&AN=14640870&site=ehost-live
•	Kirby, R. L., Ackroyd-Stolarz, S. A., Brown, M. G., Kirkland, S. A., & MacLeod, D. A. (1994). Wheelchair-related accidents caused by tips and falls among noninstitutionalized users of manually propelled wheelchairs in Nova Scotia. American Journal Of Physical Medicine & Rehabilitation, 73(5), 819-330.
•	Nishio, R., Yohei, I., Morita Y., Ito, T., Yamazaki, K., & Sakai, Y. (2019). Investigation of the functional decline in proprioceptors for low back pain using the sweep frequency. Applied Science, 9, 4988. doi:10.3390/app9234988
·	Okunribido, O. O. (2013). Patient safety during assistant propelled wheelchair transfers: the effect of the seat cushion on risk of falling. Assistive Technology, 25, 1-8. doi: 10.1080/10400435.2012.680658
•	Suetterlin, K. J. & Sayer, A. A. (2014). Proprioception: where are we now? A commentary in clinical assessment, changes across the life course, functional implications and future interventions. Age Ageing, 43(3), 313-318. doi: 10.1093/ageing/aft174
•	Toosizadeh, N., Ehsani, H., Miramonte, M., & Mohler, J. (2018). Proprioceptive impairments in high fall risk older adults: the effect of mechanical calf vibration on postural balance. Biomedical Engineering Online, 17:51.doi: 10.1186/s12938-018-0482-8
•	Varriano, B., Sulway, S., Wetmore, C., Dillon, W., Misquitta, K., Multani, N., & Rutka, J. (2021). Prevalence of cognitive and vestibular impairments in seniors experiencing falls. Canadian Journal of Neurological Sciences, 48(2), 245 – 252.
•	doi: https://doi.org/10.1017/cjn.2020.154
•	Vermette, MJ., Prince, F., Bherer, L., & Messier, J. (2019). Interaction between proprioceptive sensitivity and the attentional demand for dynamic postural control in sedentary seniors: A pilot study. Neurophysilologie Clinique, 49(6), 423-426. doi: 10.1016/j.neucl.2019.10.047
•	Yang, K. S., van Schooten, J. Sims-Gould, H. A. McKay, F. Feldman, & S. N. Robinovitch. (2017). Sex differences in the circumstances leading to falls: Evidence from real-life falls captured on video in long-term care. Journal of the American Medical Directors Association, 1-6. doi: 10.1016/j.jamda.2017.08.011
•	Yap L. K., Au, S. Y., Ang., Y. H., & Ee C. H. (2003). Nursing home falls: a local perspective. Annals of the Academy of Medicine, Singapore, 32(6), 795 – 800.




Falls captured on video in long-term care (Yang et al., 2017)		
Activity at time of fall	Number of falls (%	
	Men (N=231)	Women (N=298)
Walking	29.2	40.3
Standing	25.0	23.8
Sitting down or lowering	15.9	14.3
Seated or wheeling	15.5	11.5
Getting up or rising	14.4	10.2
Slip	0.9	0.9


E	British Columbia LTC falls study: How do pe	ople fall?			
F	alls captured on video in long-term care (N=52	29) et al., 2017)			
	Falls while getting up 40% were associated with moving objects and loss of support	t			
-	- most often due to Number of falls suffered:				
	incorrect shift of body weight or				
	excessive sway of the trunk	Number of falls	% of participants (N=529		
		1	46 %		
	alls while seated	2	20 %		
r		3	10 % 6 %		
-	most often due to loss of support associated with	5 or more	18%		
	moving object (60%) or	5 of more	10 /0		
	sliding out of a chair (40%)				



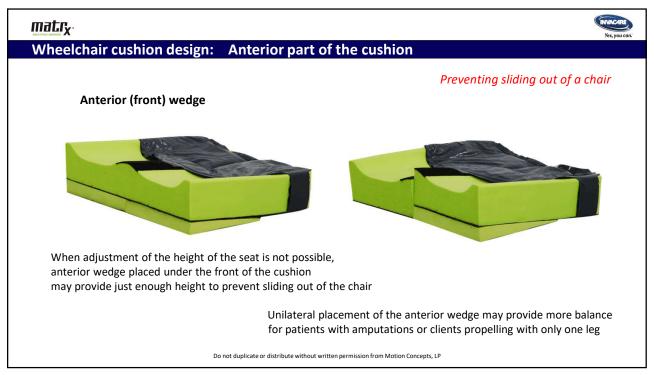
Proprioception: Why is incorrect shift of body weight so common in seniors?		
Proprioception is <u>worsened</u> with:	Proprioception is <i>improved</i> with:	
 Aging (changes in muscles and nerves) Visual changes Surgical interventions in joints Arthritis or other pathological changes Injections into the joints Neuropathy Prolonged vibration Immediately after intensive exercise Spatial neglect or 'pusher syndrome' (changes in processing visual input after CVA/strokes) Low back pain 	 Improvements in vision Regular balance training on unstable surface Short-term vibration Sensation of touching a surface/object 3-point or 4-point surface contact (e.g. back of the legs + both hands on armrests) Balanced posture of the trunk 	
 Low back pain (reliance on trunk proprioception with decline of proprioception in legs) Simultaneous demand for cognitive attention to dynamic postural control 	(Haibach, Slobounov, & Newell, 2009; Karnath & Broetz, 2003; Nishio et al., 2019; Toosizadeh, Ehsani, Miramonte, & Mohler, 2018; Vermette et al., 2019)	

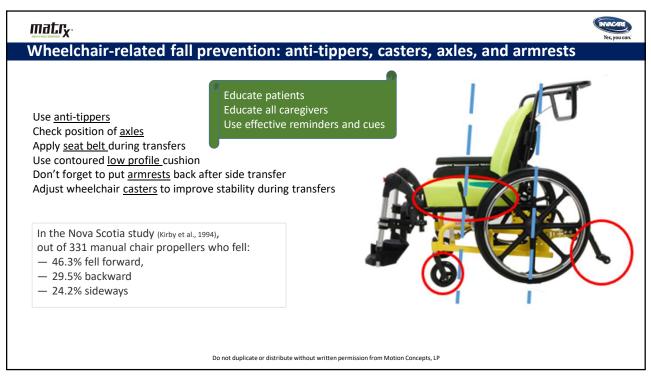
Falling while being seated or wheeled: sliding out of the wheelchair Posture – related? Wheelchair – related? Wheelchair seating - related? Image: Comparison of the wheelchair

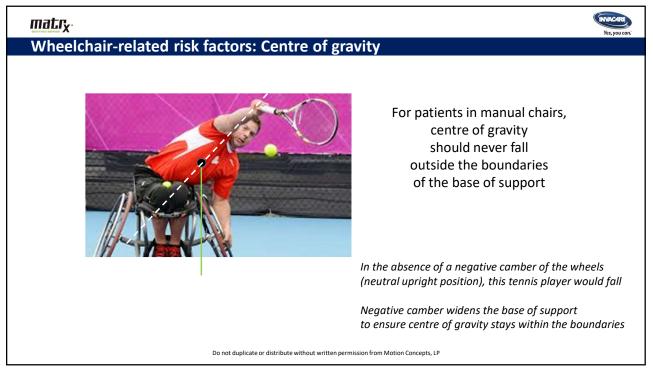
Or all the above?

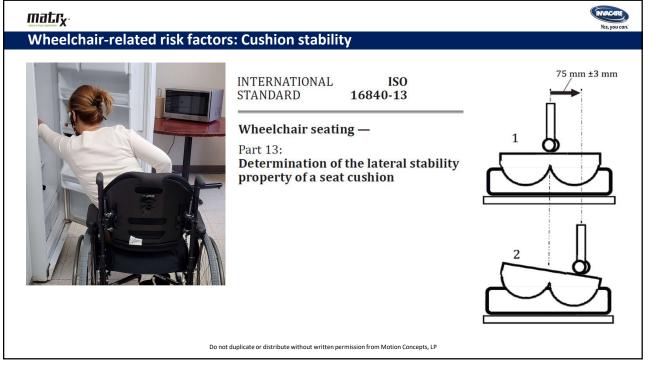
matrx

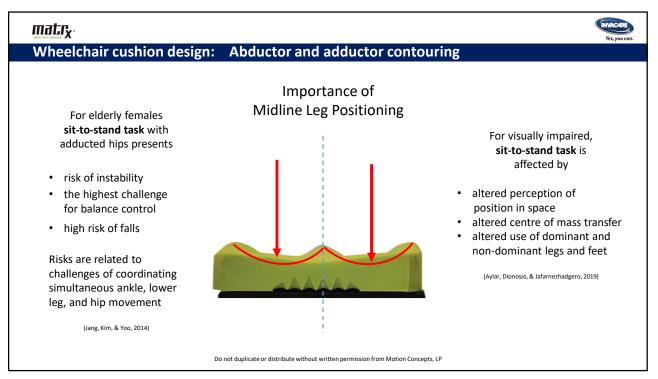
- 1. Assess patient (mat assessment)
- Assess the wheelchair
 Start from the seat, then look at the back, then the rest of the wheelchair system
- Change one thing a time and assess postural changes

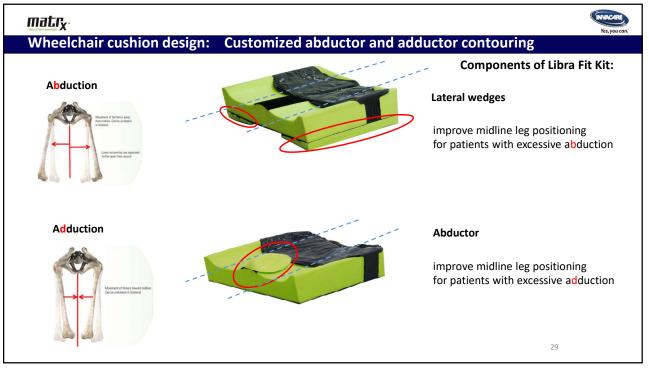


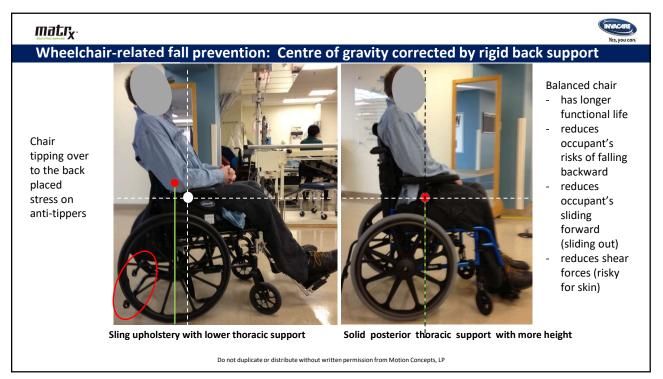


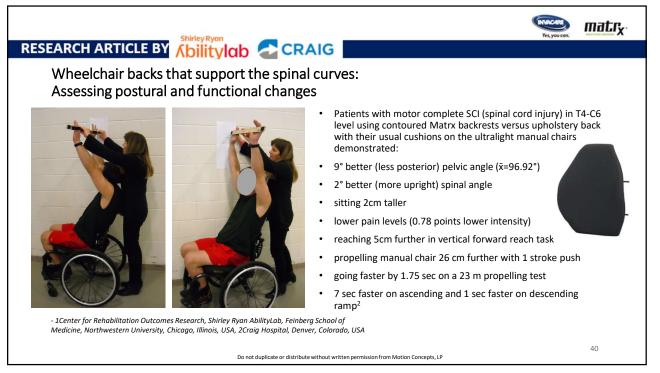


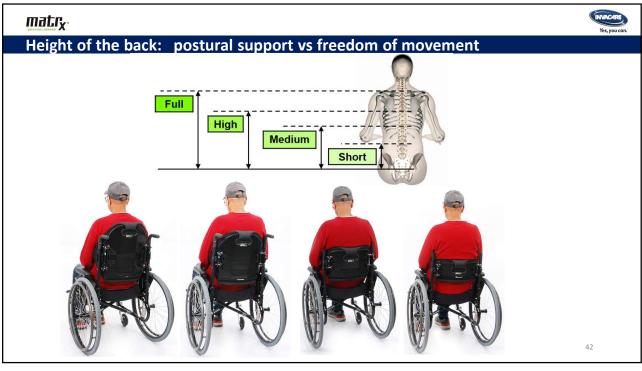


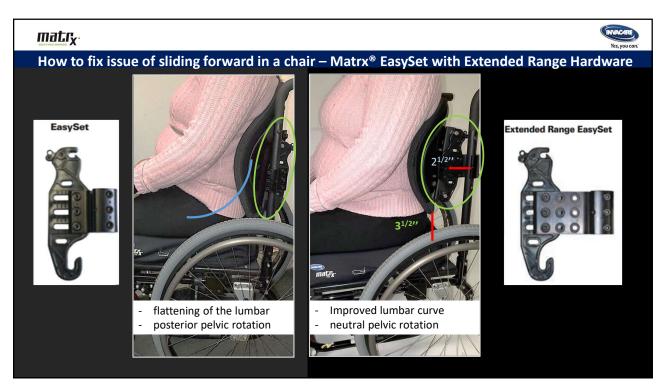


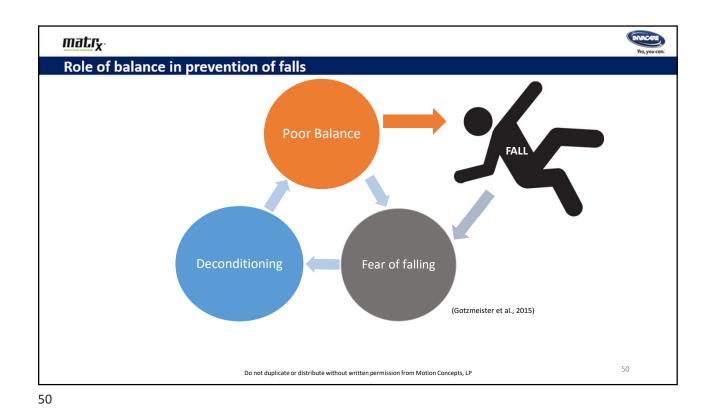


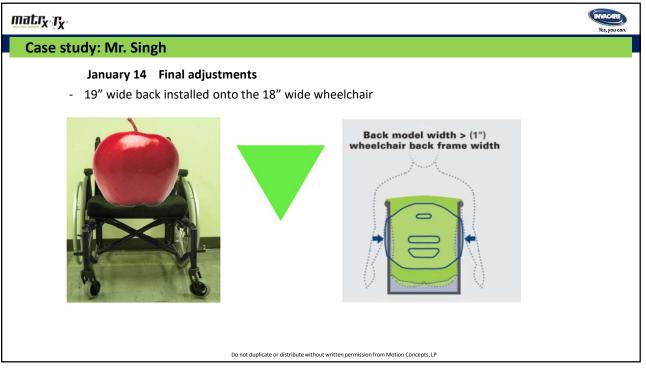




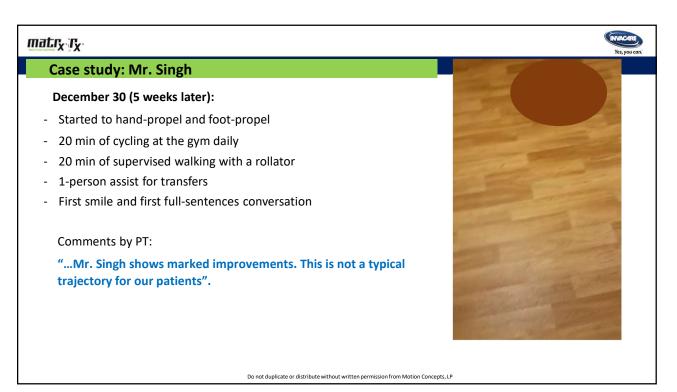


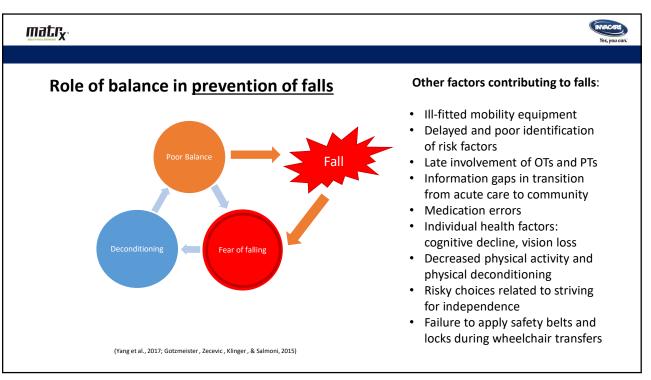


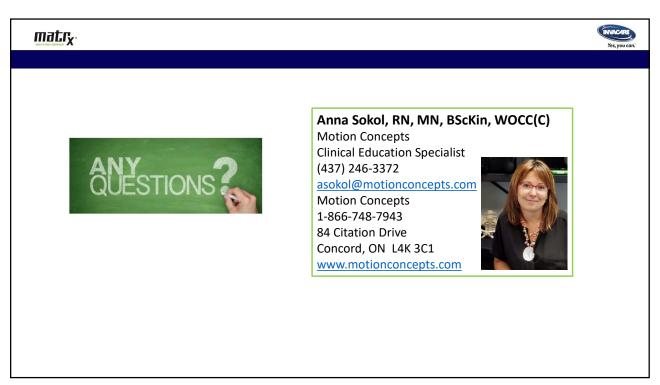



matr _x r _x	Yes, you can.
	Case study: Mr. Singh
	Addressing fear of falling
	Mr. Singh is 92 years old
	• 5 unexplained falls within 6 months
	Refusal to mobilize due to fear of falling
	Admitted to the hospital with failure to thrive
	• Treated for multiple blood clots in lower limbs, PE, and diabetes.
	 After 2 months, d/c to LTC with extreme muscle wasting, frailty, urinary incontinence
	Referred to the ADP-prescriber for a wheelchair (2 week wait)
Do not duplicate	or distribute without written permission from Motion Concepts, LP 48

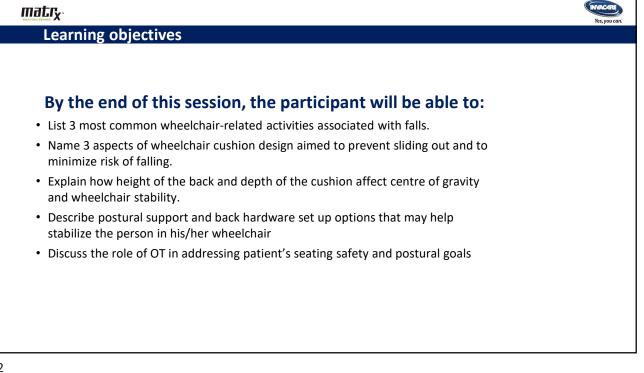
matr _x .T _x	Vers, you can:
	 Case study: Mr. Singh November 21: LTC home provided a loaner lightweight manual chair with rigid contoured back air cushion no seat cushion rigidizer Mr. Singh was sliding forward due to seat-to-floor too high After 1 week of trying, physiotherapy team requested a consult: Mr. Singh was not getting up or propelling the wheelchair wasn't communicating
Do not duplicate	e or distribute without written permission from Motion Concepts, LP 49

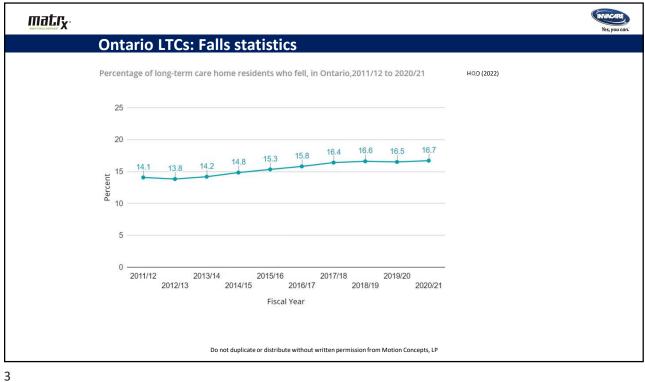

matr_x r_x


Case study: Mr. Singh

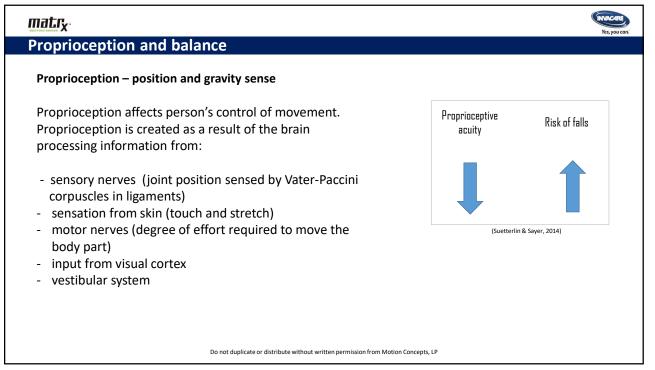

Seating products that worked:

- Proper size (18") w/c frame
- Stable skin protection & positioning cushion (1818)
- Gently contoured back 1" wider than chair frame (1918)
- Head support with adjustable mounting hardware

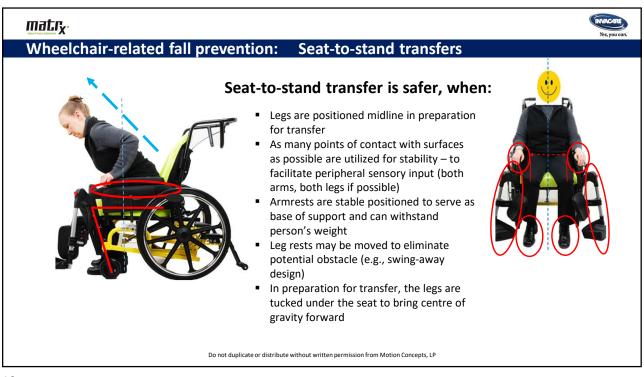


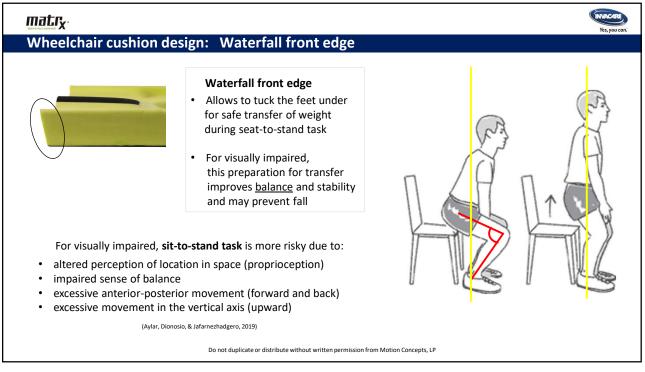


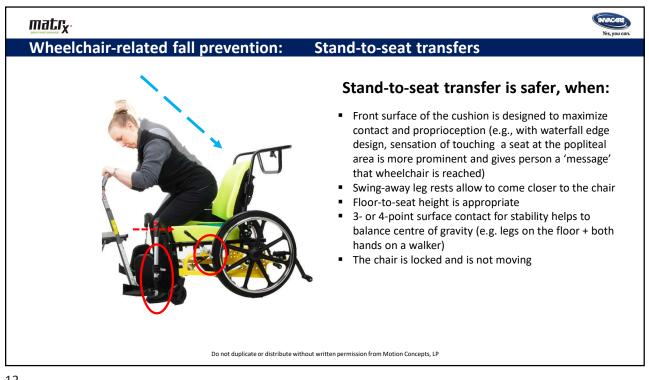
	References:
•	Aissaoui, R., Boucher, C., Bourbonnais, D., Lacoste, M., & Dansereau, J. (2001). Effect of seat cushion on dynamic stability in sitting during a reaching task in wheelchair users with paraplegia. Archives of Physical Medicine and Rehabilitation, 82, 274-281. doi: 10.1053/apmr.2001.19473
•	Aylar, M. F., Dionosio, V. C. & Jafarnezhadgero, A. A. (2019). Do the centre of mass strategies change with restricted vision during the sit-to stand task? Clinical Biomechanics, 62, 104-112.
•	Erickson, B., Hosseini, M. A., Mudhar, P. S., Soleimani, M., Aboonabi, A., Arzanpour, S., & Sparrey, C. J. (2016). The dynamics of electric powered wheelchair sideways tips and falls: experimental and computational analysis of impact forces and injury. Journal of Neuro Engineering and Rehabilitation, 13(20). doi: 10.1186/s12984-016-0128-7
•	Forslund, E.B., Jorgensen, V., Franzen, E., Opheim, A., et al. (2017). High incidence of falls and fall-related injuries in wheelchair users with spinal cord injury: a prospective study of risk indicators. Journal of Rehabilitation Medicine, 49, 144- 151. doi: 10.2340/16501977-2177
•	Gotzmeister, D., Zecevic, A. A., Klinger, L., & Salmoni, A. (2015). "People are getting lost a little bit": systemic factors that contribute to falls in community-dwelling octogenarians. Canadian Journal of Aging, 34(3), 397-410. doi: 10.1017/S071498081500015X
•	Haibach, P., Slobounov, S., & Newell, K. (2009). Egomotion and vection in young and elderly adults. Gerontology, 55(6), 637–643. https://doi.org/10.1159/000235816
•	HQO (Health Quality Ontario). (2022). Long-Term Care Home Performance: Falls. https://www.hqontario.ca/System-Performance/Long-Term-Care-Home-Performance/Falls
•	HQO (Health Quality Ontario). (2017). Insights into Quality Improvement: Home care Impressions and observations: 2016/2017 Quality Improvement Plans. Retrieved January 6, 2020, from: http://www.hqontario.ca/Portals/0/documents/qi/qip/analysis-home-care-2016-17-en.pdf
•	Jang, E. M., Kim, MH., Yoo, W. G. (2014). Comparison of the tibialis anterior and soleus muscles activities during the sit-to-stand movement with hip adduction and hip abduction in elderly females. Journal of Physical Therapy Science, 26(7), 1045-7. doi: 10.1589/jpts.26.1045
•	Karnath, HO., & Broetz, D. (2003). Understanding and treating "pusher syndrome." Physical Therapy, 83(12), 1119–1125. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=mdc&AN=14640870&site=ehost-live
•	Kirby, R. L., Ackroyd-Stolarz, S. A., Brown, M. G., Kirkland, S. A., & MacLeod, D. A. (1994). Wheelchair-related accidents caused by tips and falls among noninstitutionalized users of manually propelled wheelchairs in Nova Scotia. American Journal Of Physical Medicine & Rehabilitation, 73(5), 319-330.
·	Nishio, R., Yohei, I., Morita Y., Ito, T., Yamazaki, K., & Sakai, Y. (2019). Investigation of the functional decline in proprioceptors for low back pain using the sweep frequency. Applied Science, 9, 4988. doi:10.3390/app9234988
•	Okunribido, O. O. (2013). Patient safety during assistant propelled wheelchair transfers: the effect of the seat cushion on risk of falling. Assistive Technology, 25, 1-8. doi: 10.1080/10400435.2012.680658
•	Suetterlin, K. J. & Sayer, A. A. (2014). Proprioception: where are we now? A commentary in clinical assessment, changes across the life course, functional implications and future interventions. Age Ageing, 43(3), 313-318. doi: 10.1093/ageing/aft174
•	Toosizadeh, N., Ehsani, H., Miramonte, M., & Mohler, J. (2018). Proprioceptive impairments in high fall risk older adults: the effect of mechanical calf vibration on postural balance. Biomedical Engineering Online, 17:51.doi: 10.1186/s12938-018-0482-8
•	Varriano, B., Sulway, S., Wetmore, C., Dillon, W., Misquitta, K., Multani, N., & Rutka, J. (2021). Prevalence of cognitive and vestibular impairments in seniors experiencing falls. Conodian Journal of Neurological Sciences, 48(2), 245 – 252.
•	doi: https://doi.org/10.1017/cjn.2020.154
•	Vermette, MJ., Prince, F., Bherer, L., & Messier, J. (2019). Interaction between proprioceptive sensitivity and the attentional demand for dynamic postural control in sedentary seniors: A pilot study. Neurophysilologie Clinique; 49(6), 423- 426. doi: 10.1016/j.neudi.2019.10.047
•	Yang, K. S., van Schooten, J. Sims-Gould, H. A. McKay, F. Feldman, & S. N. Robinovitch. (2017). Sex differences in the circumstances leading to falls: Evidence from real-life falls captured on video in long-term care. Journal of the American Medical Directors Association, 1-6. doi: 10.1016/j.jamda.2017.08.011
·	Yap L. K., Au, S. Y., Ang., Y. H., & Ee C. H. (2003). Nursing home falls: a local perspective. Annals of the Academy of Medicine, Singapore, 32(6), 795 – 800.



Falls captured on video in long-term care (Yang et al., 2017)		
Activity at time of fall	Number of falls (%	
	Men (N=231)	Women (N=298)
Walking	29.2	40.3
Standing	25.0	23.8
Sitting down or lowering	15.9	14.3
Seated or wheeling	15.5	11.5
Getting up or rising	14.4	10.2
Slip	0.9	0.9


British Columbia LTC falls study: How do pe	ople fall?	
Falls captured on video in long-term care (N=52 (Yang	29) .et al., 2017)	
 Falls while getting up 40% were associated with moving objects and loss of suppor most often due to 	rt Number of falls suf	fered:
incorrect shift of body weight or		
excessive sway of the trunk	Number of falls	% of participants (N=529
	1	46 %
	2	20 %
Falls while seated	3	10 %
 most often due to loss of support associated with 	4	6%
moving object (60%) or	5 or more	18 %
sliding out of a chair (40%)		




Proprioception: Why is incorrect shift of body weight so common in seniors?		
Proprioception is <u>worsened</u> with:	Proprioception is <i>improved</i> with:	
 Aging (changes in muscles and nerves) Visual changes Surgical interventions in joints Arthritis or other pathological changes Injections into the joints Neuropathy Prolonged vibration Immediately after intensive exercise Spatial neglect or 'pusher syndrome' (changes in processing visual input after CVA/strokes) 	 Improvements in vision Regular balance training on unstable surface Short-term vibration Sensation of touching a surface/object 3-point or 4-point surface contact (e.g. back of the legs + both hands on armrests) Balanced posture of the trunk 	
 Low back pain (reliance on trunk proprioception with decline of proprioception in legs) Simultaneous demand for cognitive attention to dynamic postural control 	(Haibach, Slobounov, & Newell, 2009; Karnath & Broetz, 2003; Nishio et al., 2019; Toosizadeh, Ehsani, Miramonte, & Mohler, 2018; Vermette et al., 2019)	

Falling while being seated or wheeled: sliding out of the wheelchair Posture – related? Wheelchair – related?

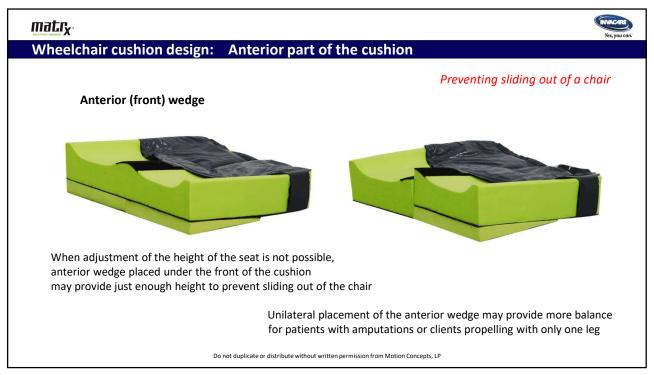
Or all the above?

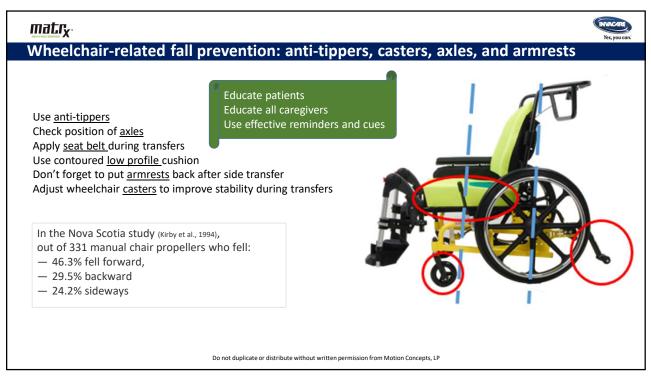
matrx

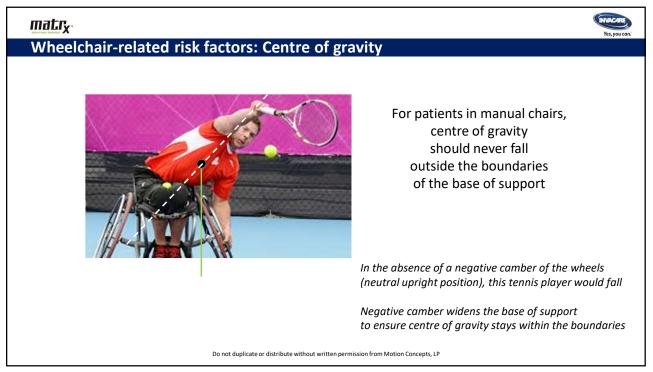
- 1. Assess patient (mat assessment)
- Assess the wheelchair
 Start from the seat, then look at the back, then the rest of the wheelchair system

Wheelchair seating - related?

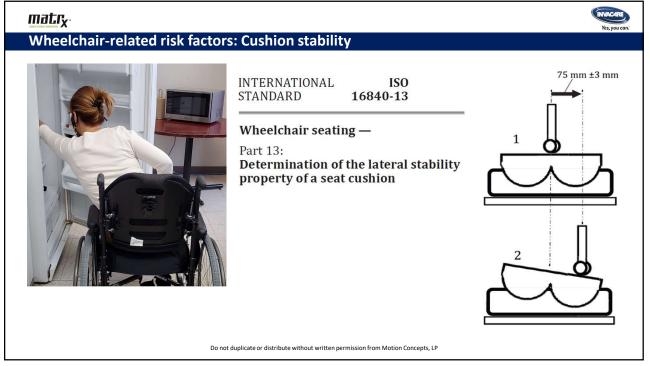
- Change one thing a time and assess postural changes

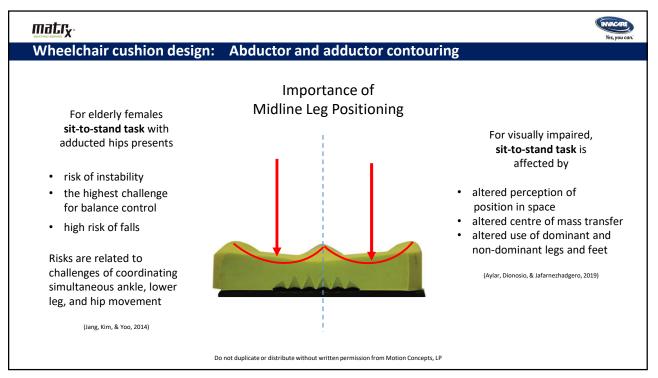


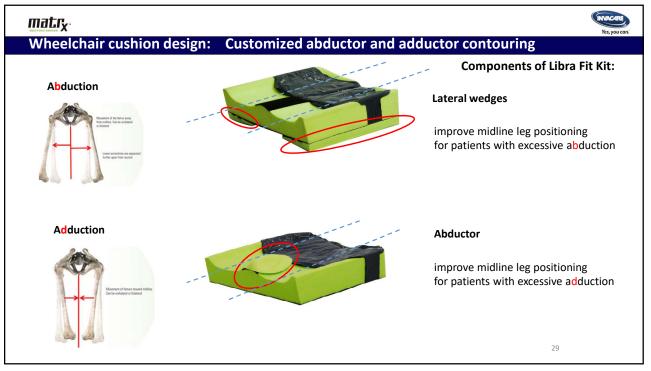


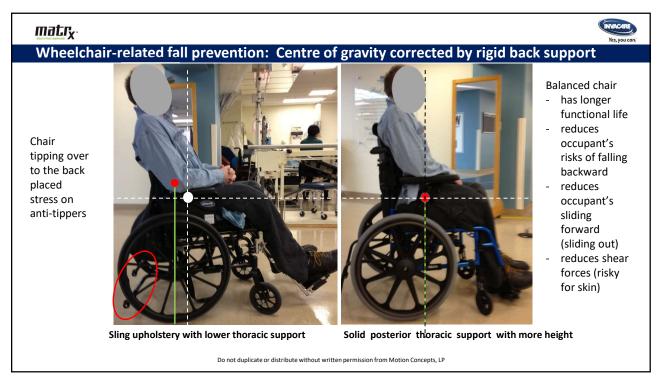


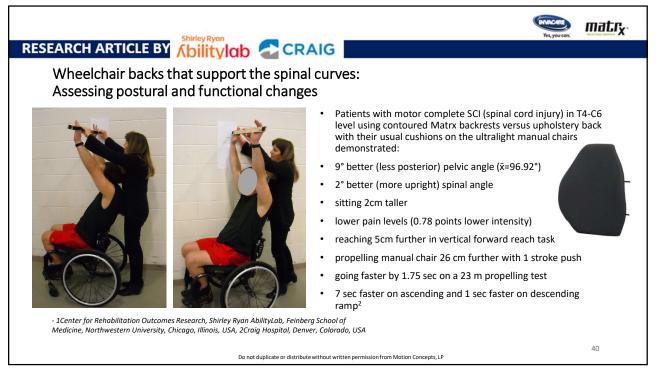


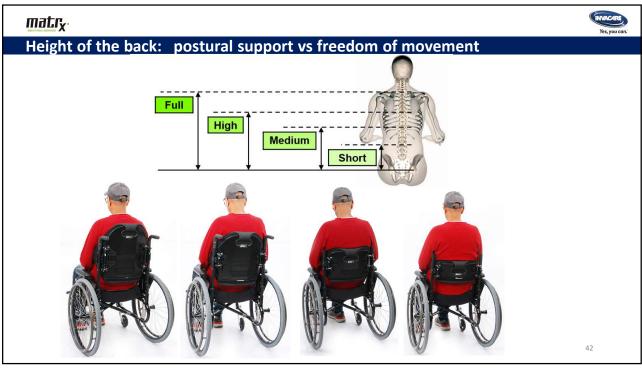


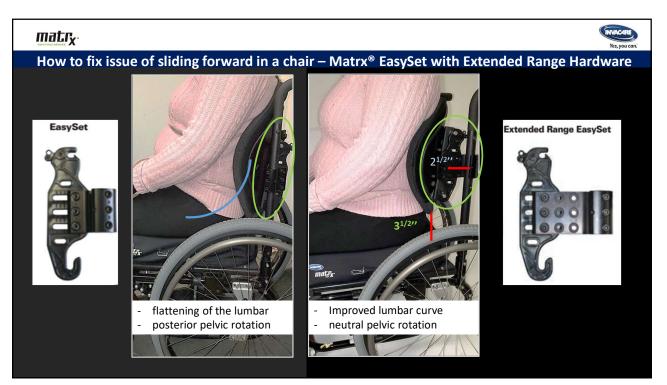


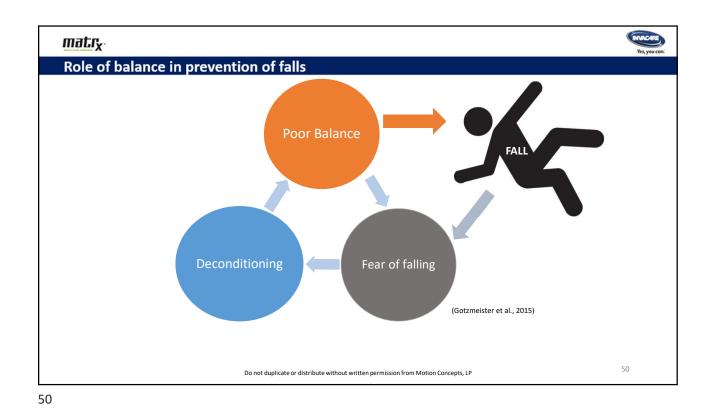


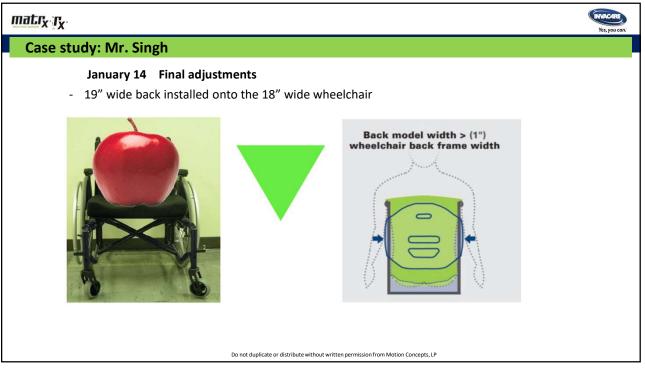




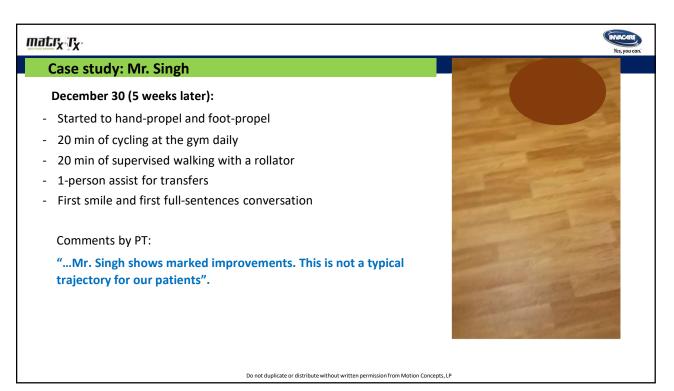


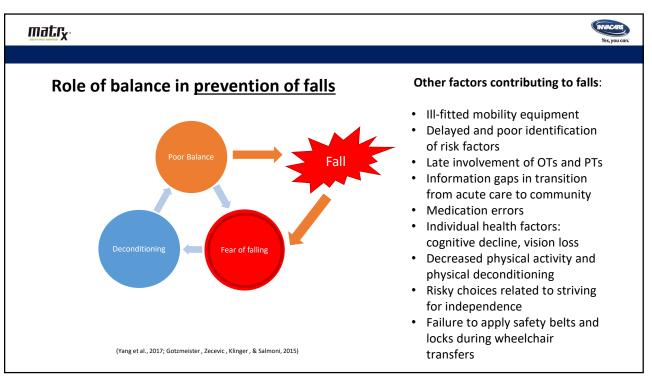


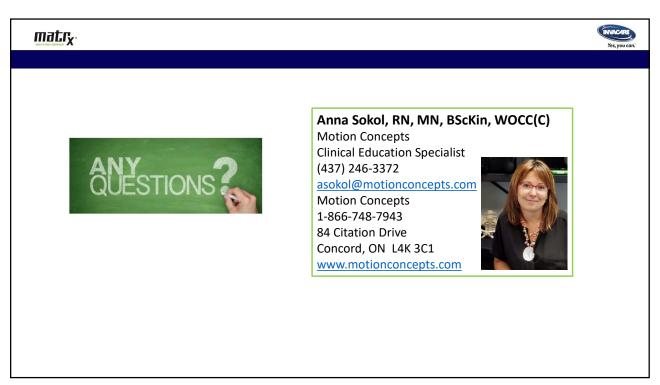



 Case study: Mr. Singh Addressing fear of falling Mr. Singh is 92 years old S unexplained falls within 6 months Refusal to mobilize due to fear of falling Admitted to the hospital with failure to thrive Treated for multiple blood clots in lower limbs, PE, and diabetes. After 2 months, d/c to LTC with extreme muscle wasting, frailty, urinary incontinence Referred to the ADP-prescriber for a wheelchair (2 week wait) 	matr _x .r _x .	Yex, you can
 Mr. Singh is 92 years old S unexplained falls within 6 months Refusal to mobilize due to fear of falling Admitted to the hospital with failure to thrive Treated for multiple blood clots in lower limbs, PE, and diabetes. After 2 months, d/c to LTC with extreme muscle wasting, frailty, urinary incontinence 		Case study: Mr. Singh
 S unexplained falls within 6 months Refusal to mobilize due to fear of falling Admitted to the hospital with failure to thrive Treated for multiple blood clots in lower limbs, PE, and diabetes. After 2 months, d/c to LTC with extreme muscle wasting, frailty, urinary incontinence 		Addressing fear of falling
 Refusal to mobilize due to fear of falling Admitted to the hospital with failure to thrive Treated for multiple blood clots in lower limbs, PE, and diabetes. After 2 months, d/c to LTC with extreme muscle wasting, frailty, urinary incontinence 		Mr. Singh is 92 years old
 Admitted to the hospital with failure to thrive Treated for multiple blood clots in lower limbs, PE, and diabetes. After 2 months, d/c to LTC with extreme muscle wasting, frailty, urinary incontinence 		5 unexplained falls within 6 months
 Treated for multiple blood clots in lower limbs, PE, and diabetes. After 2 months, d/c to LTC with extreme muscle wasting, frailty, urinary incontinence 		Refusal to mobilize due to fear of falling
diabetes. • After 2 months, d/c to LTC with extreme muscle wasting, frailty, urinary incontinence		Admitted to the hospital with failure to thrive
urinary incontinence		
Referred to the ADP-prescriber for a wheelchair (2 week wait)		
		Referred to the ADP-prescriber for a wheelchair (2 week wait)
Do not duplicate or distribute without written permission from Motion Concepts, LP 48	Do not duplicate o	or distribute without written permission from Motion Concepts, LP 48

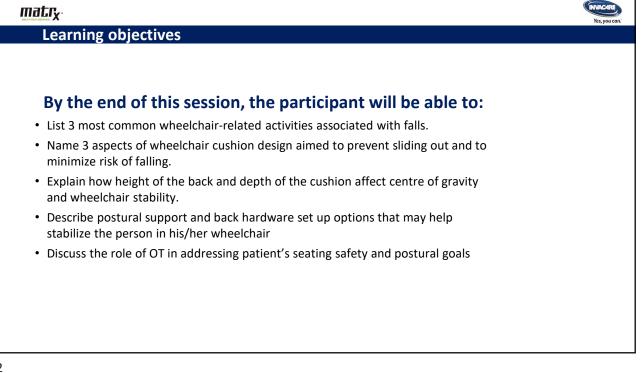
matr _x .T _x .	Yes, you can:
	Case study: Mr. Singh November 21: LTC home provided a loaner lightweight manual chair with rigid contoured back air cushion no seat cushion rigidizer Mr. Singh was sliding forward due to seat-to-floor too high After 1 week of trying, physiotherapy team requested a consult: Mr. Singh was not getting up or propelling the wheelchair Wasn't communicating
Do not duplicate	e or distribute without written permission from Motion Concepts, LP 4-2

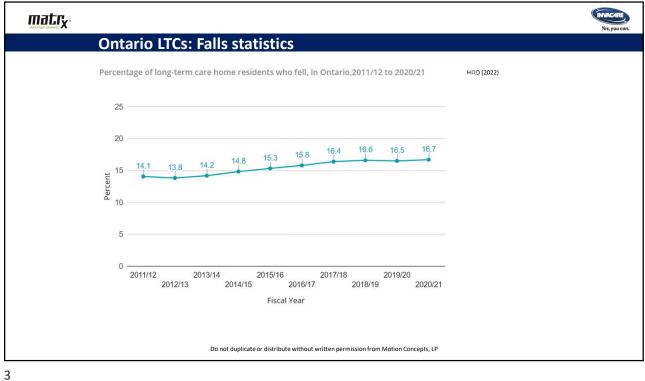

matr_x r_x


Case study: Mr. Singh

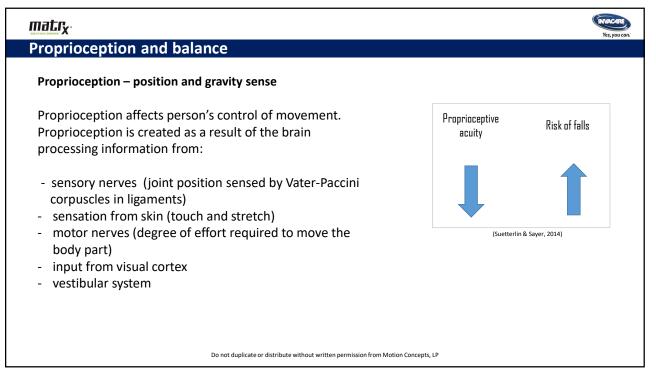

Seating products that worked:

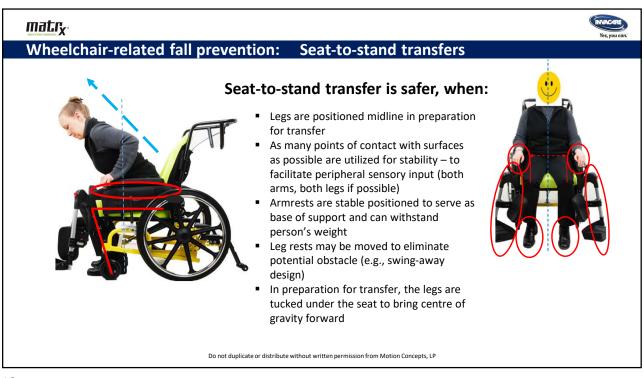
- Proper size (18") w/c frame
- Stable skin protection & positioning cushion (1818)
- Gently contoured back 1" wider than chair frame (1918)
- Head support with adjustable mounting hardware

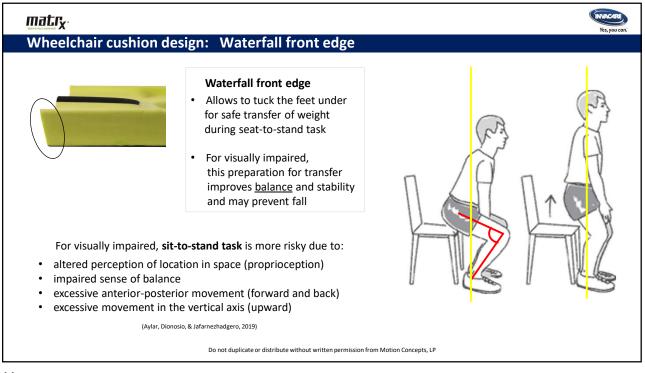


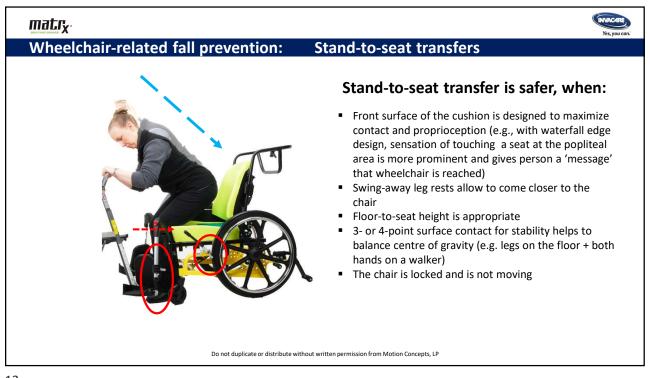


	References:
•	Alssaoui, R., Boucher, C., Bourbonnais, D., Lacoste, M., & Dansereau, J. (2001). Effect of seat cushion on dynamic stability in sitting during a reaching task in wheelchair users with paraplegia. Archives of Physical Medicine and Rehabilitation, 82, 274-281. doi: 10.1053/apmr.2001.19473
•	Aylar, M. F., Dionosio, V. C. & Jafarnezhadgero, A. A. (2019). Do the centre of mass strategies change with restricted vision during the sit-to stand task? Clinical Biomechanics, 62, 104-112.
•	Erickson, B., Hosseini, M. A., Mudhar, P. S., Soleimani, M., Aboonabi, A., Arzanpour, S., & Sparrey, C. J. (2016). The dynamics of electric powered wheelchair sideways tips and falls: experimental and computational analysis of impact forces and injury. Journal of Neuro Engineering and Rehabilitation, 13(20). doi: 10.1186/s12984-016-0128-7
•	Forslund, E.B., Jorgensen, V., Franzen, E., Opheim, A., et al. (2017). High incidence of falls and fall-related injuries in wheelchair users with spinal cord injury: a prospective study of risk indicators. Journal of Rehabilitation Medicine, 49, 144- 151. doi: 10.2340/16501977-2177
·	Gotzmeister, D., Zecevic, A. A., Klinger, L., & Salmoni, A. (2015). "People are getting lost a little bit": systemic factors that contribute to falls in community-dwelling octogenarians. Canadian Journal of Aging, 34(3), 397-410. doi: 10.1017/S071498081500015X
•	Haibach, P., Slobounov, S., & Newell, K. (2009). Egomotion and vection in young and elderly adults. Gerontology, 55(6), 637–643. https://doi.org/10.1159/000235816
•	HQO (Health Quality Ontario). (2022). Long-Term Care Home Performance: Falls. https://www.hqontario.ca/System-Performance/Long-Term-Care-Home-Performance/Falls
•	HQO (Health Quality Ontario). (2017). Insights into Quality Improvement: Home care Impressions and observations: 2016/2017 Quality Improvement Plans. Retrieved January 6, 2020, from: http://www.hqontario.ca/Portals/0/documents/qi/qip/analysis-home-care-2016-17-en.pdf
•	Jang, E. M., Kim, MH., Yoo, W. G. (2014). Comparison of the tibialis anterior and soleus muscles activities during the sit-to-stand movement with hip adduction and hip abduction in elderly females. Journal of Physical Therapy Science, 26(7), 1045-7. doi: 10.1589/jpts.26.1045
•	Karnath, HO., & Broetz, D. (2003). Understanding and treating "pusher syndrome." Physical Therapy, 83(12), 1119–1125. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=mdc&AN=14640870&site=ehost-live
•	Kirby, R. L., Ackroyd-Stolarz, S. A., Brown, M. G., Kirkland, S. A., & MacLeod, D. A. (1994). Wheelchair-related accidents caused by tips and falls among noninstitutionalized users of manually propelled wheelchairs in Nova Scotia. American Journal Of Physical Medicine & Rehabilitation, 73(5), 819-330.
•	Nishio, R., Yohei, I., Morita Y., Ito, T., Yamazaki, K., & Sakai, Y. (2019). Investigation of the functional decline in proprioceptors for low back pain using the sweep frequency. Applied Science, 9, 4988. doi:10.3390/app9234988
•	Okunribido, O. O. (2013). Patient safety during assistant propelled wheelchair transfers: the effect of the seat cushion on risk of falling. Assistive Technology, 25, 1-8. doi: 10.1080/10400435.2012.680658
•	Suetterlin, K. J. & Sayer, A. A. (2014). Proprioception: where are we now? A commentary in clinical assessment, changes across the life course, functional implications and future interventions. Age Ageing, 43(3), 313-318. doi: 10.1093/ageing/aft174
•	Toosizadeh, N., Ehsani, H., Miramonte, M., & Mohler, J. (2018). Proprioceptive impairments in high fall risk older adults: the effect of mechanical calf vibration on postural balance. Biomedical Engineering Online, 17:51.doi: 10.1186/s12938-018-0482-8
•	Varriano, B., Sulway, S., Wetmore, C., Dillon, W., Misquitta, K., Multani, N., & Rutka, J. (2021). Prevalence of cognitive and vestibular impairments in seniors experiencing falls. Canadian Journal of Neurological Sciences, 48(2), 245 – 252.
•	doi: https://doi.org/10.1017/cjn.2020.154
•	Vermette, MJ., Prince, F., Bherer, L., & Messier, J. (2019). Interaction between proprioceptive sensitivity and the attentional demand for dynamic postural control in sedentary seniors: A pilot study. Neurophysilologie Clinique, 49(6), 423-426. doi: 10.1016/j.neucl.2019.10.047
•	Yang, K. S., van Schooten, J. Sims-Gould, H. A. McKay, F. Feldman, & S. N. Robinovitch. (2017). Sex differences in the circumstances leading to falls: Evidence from real-life falls captured on video in long-term care. Journal of the American Medical Directors Association, 1-6. doi: 10.1016/j.jamda.2017.08.011
•	Yap L. K., Au, S. Y., Ang., Y. H., & Ee C. H. (2003). Nursing home falls: a local perspective. Annals of the Academy of Medicine, Singapore, 32(6), 795 – 800.




Falls captured on video in long-term care (Yang et al., 2017)				
Activity at time of fall	Number of falls (%)		
	Men (N=231)	Women (N=298)		
Walking	29.2	40.3		
Standing	25.0	23.8		
Sitting down or lowering	15.9	14.3		
Seated or wheeling	15.5	11.5		
Getting up or rising	14.4	10.2		
Slip	0.9	0.9		


E	British Columbia LTC falls study: How do pe	ople fall?		
F	alls captured on video in long-term care (N=52	29) et al., 2017)		
	Falls while getting up 40% were associated with moving objects and loss of support	t		
-	- most often due to Number of falls		uffered:	
	incorrect shift of body weight or			
	excessive sway of the trunk	Number of falls	% of participants (N=529	
		1	46 %	
	alls while seated	2	20 %	
r		3	10 % 6 %	
-	most often due to loss of support associated with	5 or more	18 %	
	moving object (60%) or	5 of more	10 /0	
	sliding out of a chair (40%)			



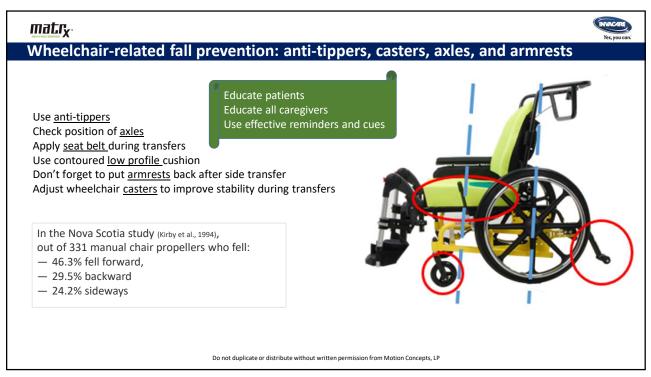
Proprioception: Why is incorrect shift of body weight so common in seniors?					
Proprioception is <u>worsened</u> with:	Proprioception is <i>improved</i> with:				
 Aging (changes in muscles and nerves) Visual changes Surgical interventions in joints Arthritis or other pathological changes Injections into the joints Neuropathy Prolonged vibration Immediately after intensive exercise Spatial neglect or 'pusher syndrome' (changes in processing visual input after CVA/strokes) Low back pain 	 Improvements in vision Regular balance training on unstable surface Short-term vibration Sensation of touching a surface/object 3-point or 4-point surface contact (e.g. back of the legs + both hands on armrests) Balanced posture of the trunk 				
 Low back pain (reliance on trunk proprioception with decline of proprioception in legs) Simultaneous demand for cognitive attention to dynamic postural control 	(Haibach, Slobounov, & Newell, 2009; Karnath & Broetz, 2003; Nishio et al., 2019; Toosizadeh, Ehsani, Miramonte, & Mohler, 2018; Vermette et al., 2019)				

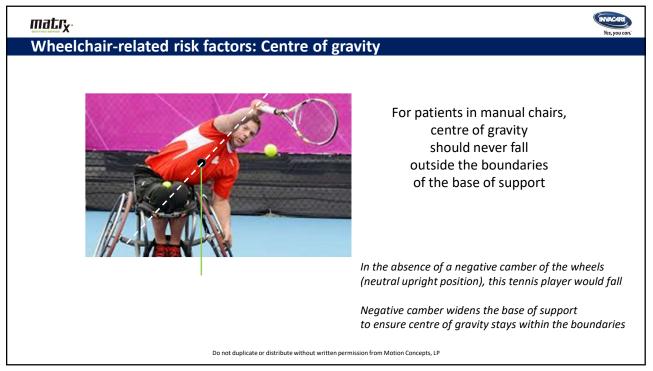
Falling while being seated or wheeled: sliding out of the wheelchair Posture – related? Wheelchair – related? Wheelchair seating - related? Image: Comparison of the seating - related?

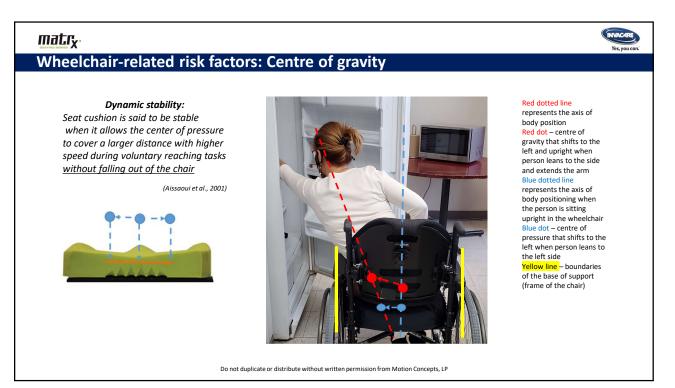
Or all the above?

matrx

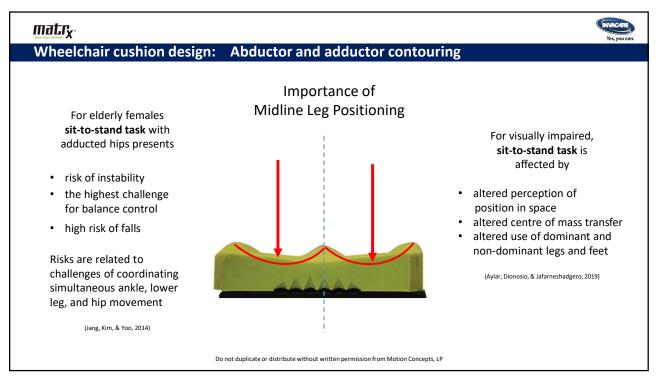
- 1. Assess patient (mat assessment)
- Assess the wheelchair
 Start from the seat, then look at the back, then the
- rest of the wheelchair system
 Change one thing a time and assess postural changes

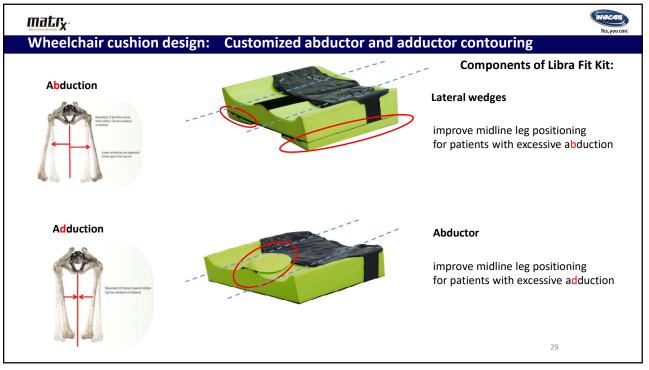


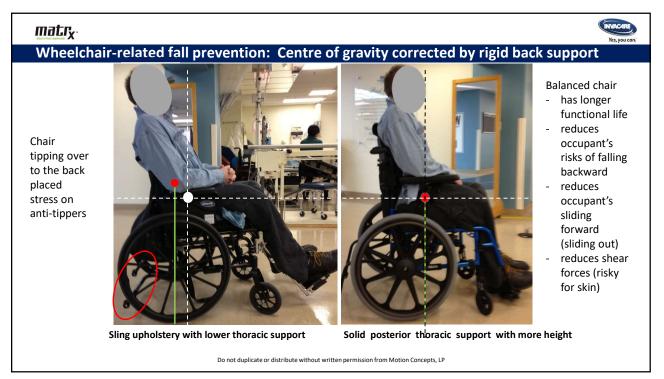


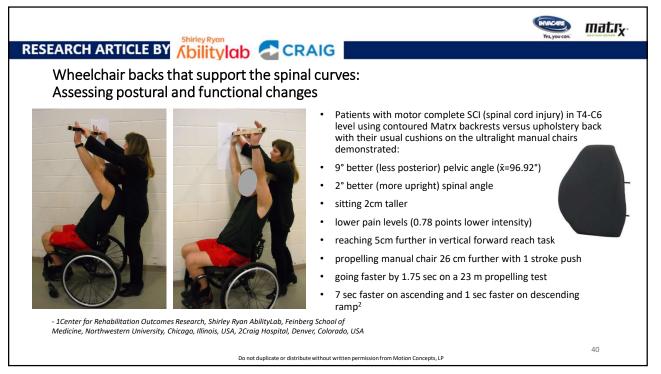


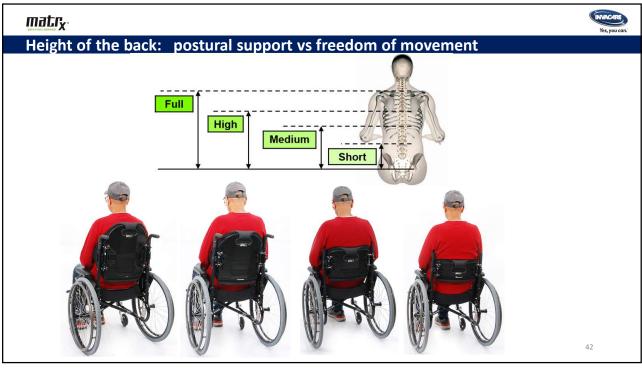


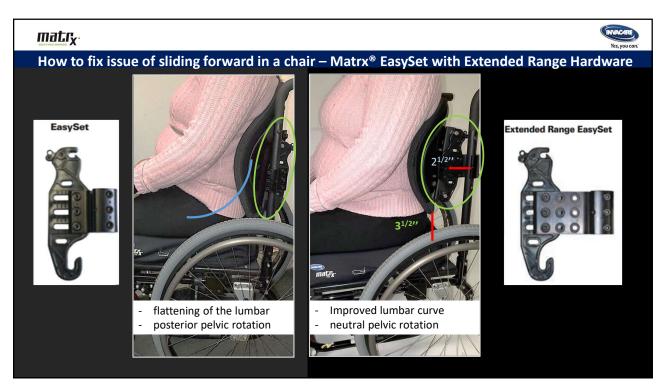


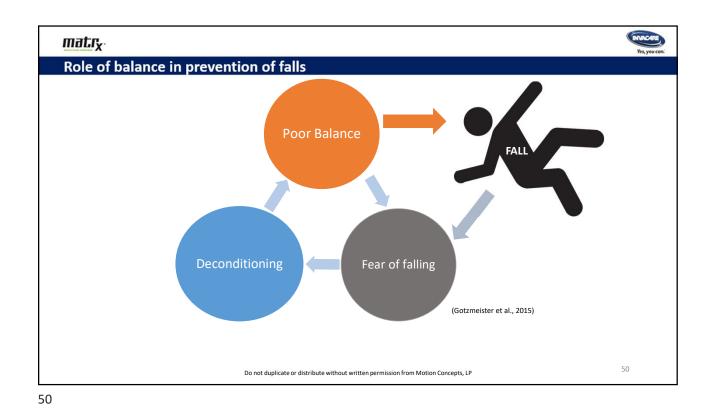


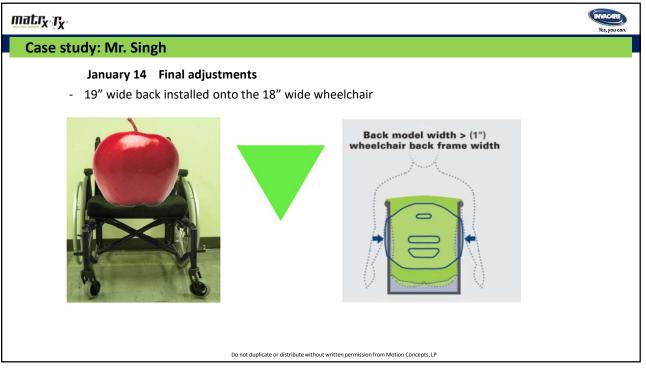




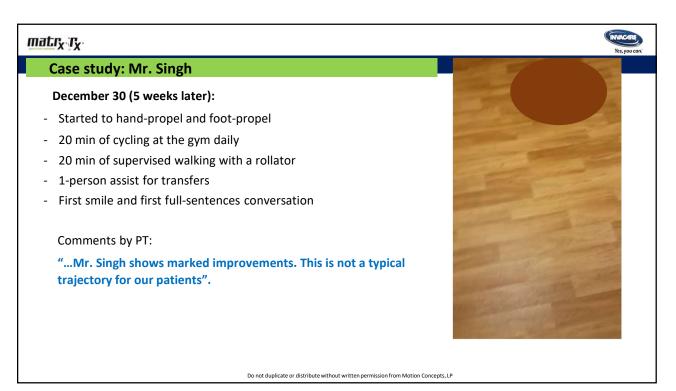


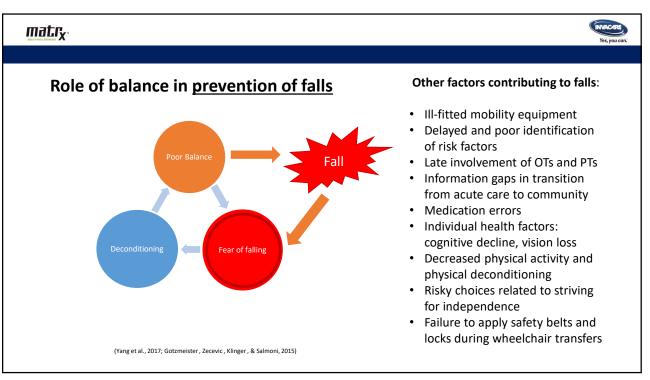


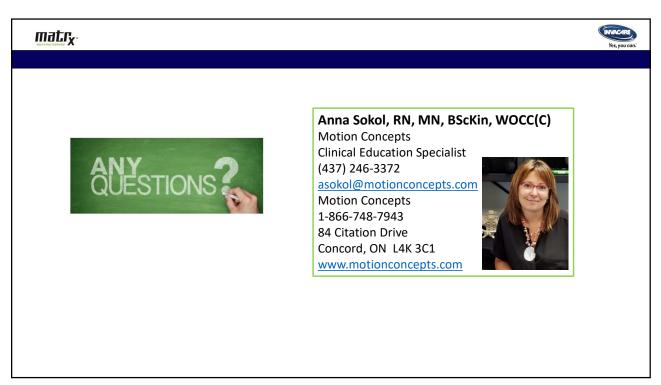



	Yes, you co
	Case study: Mr. Singh
	Addressing fear of falling
	Mr. Singh is 92 years old
	5 unexplained falls within 6 months
	Refusal to mobilize due to fear of falling
	Admitted to the hospital with failure to thrive
	Treated for multiple blood clots in lower limbs, PE, and diabetes.
	After 2 months, d/c to LTC with extreme muscle wasting, frailty, urinary incontinence
	Referred to the ADP-prescriber for a wheelchair (2 week wait)
Do not du	plicate or distribute without written permission from Motion Concepts, LP 48

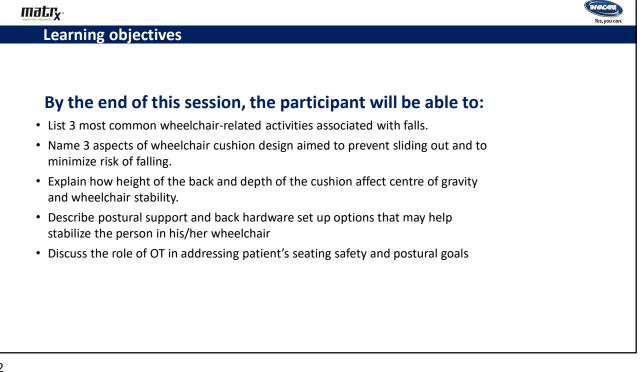
matr _x . I _X .	Yes, you can:
	Case study: Mr. Singh November 21: LTC home provided a loaner lightweight manual chair with rigid contoured back air cushion no seat cushion rigidizer Mr. Singh was sliding forward due to seat-to-floor too high
	After 1 week of trying, physiotherapy team requested a consult: - Mr. Singh was not getting up or propelling the wheelchair - wasn't communicating
Do not duplica	te or distribute without written permission from Motion Concepts, LP 49

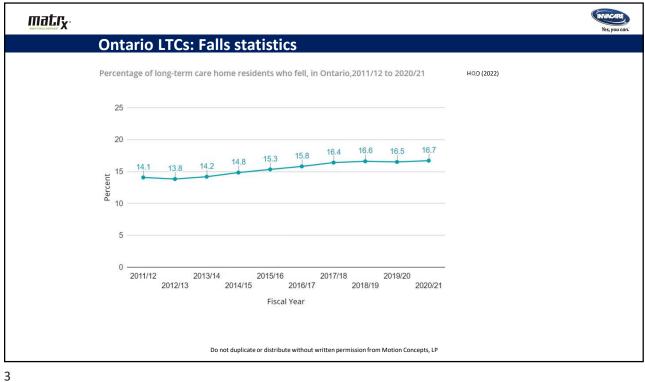

matr_x r_x


Case study: Mr. Singh

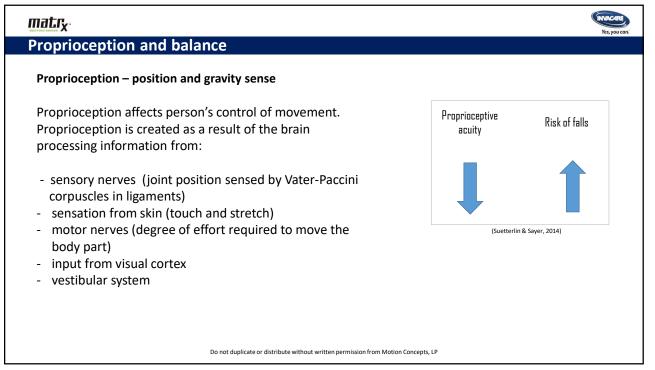

Seating products that worked:

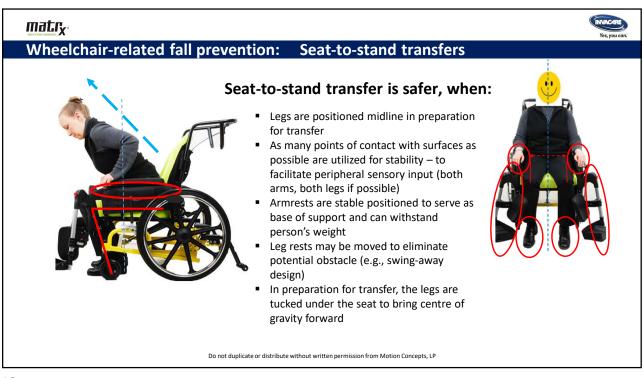
- Proper size (18") w/c frame
- Stable skin protection & positioning cushion (1818)
- Gently contoured back 1" wider than chair frame (1918)
- Head support with adjustable mounting hardware

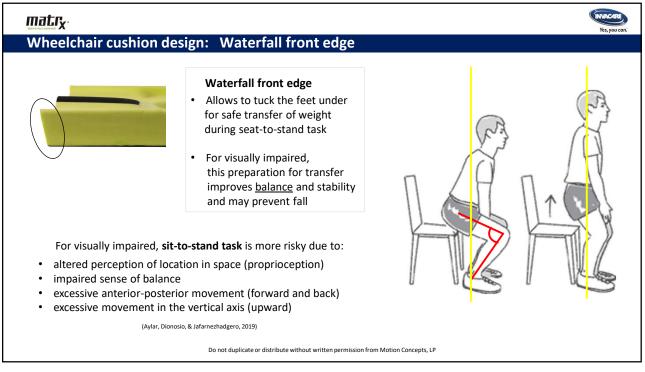


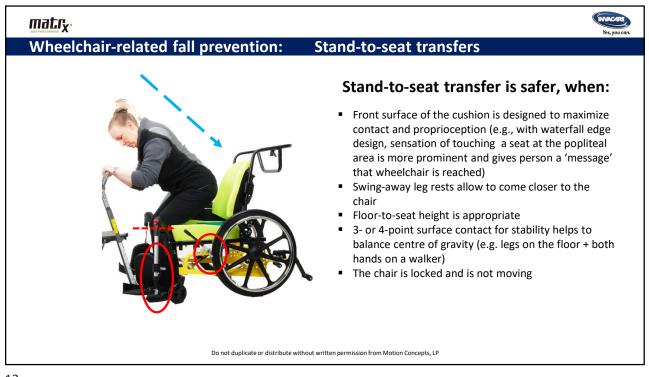


matrx	Yes, you can:
References:	
 Aissaoui, R., Boucher, C., Bourbonnais, D., Lacoste, M., & Dansereau, J. (2001). Effect of seat cushion on dynamic stability in sitting during a reaching task in wheelchair users with paraplegia. Archives of Physical M 82, 274-281. doi: 10.1053/apmr.2001.19473 	ledicine and Rehabilitation,
• Aylar, M. F., Dionosio, V. C. & Jafarnezhadgero, A. A. (2019). Do the centre of mass strategies change with restricted vision during the sit-to stand task? Clinical Biomechanics, 62, 104-112.	
 Erickson, B., Hosseini, M. A., Mudhar, P. S., Soleimani, M., Aboonabi, A., Arzanpour, S., & Sparrey, C. J. (2016). The dynamics of electric powered wheelchair sideways tips and falls: experimental and computationa and injury. Journal of Neuro Engineering and Rehabilitation, 13(20). doi: 10.1186/s12984-016-0128-7 	al analysis of impact forces
 Forslund, E.B., Jorgensen, V., Franzen, E., Opheim, A., et al. (2017). High incidence of falls and fall-related injuries in wheelchair users with spinal cord injury: a prospective study of risk indicators. Journal of Rehabi 151. doi: 10.2340/16501977-2177 	litation Medicine, 49, 144-
 Gotzmeister, D., Zecevic, A. A., Klinger, L., & Salmoni, A. (2015). "People are getting lost a little bit": systemic factors that contribute to falls in community-dwelling octogenarians. Canadian Journal of Aging, 34(3), 10.1017/S071498081500015X 	397-410. doi:
 Haibach, P., Slobounov, S., & Newell, K. (2009). Egomotion and vection in young and elderly adults. Gerontology, 55(6), 637–643. https://doi.org/10.1159/000235816 	
HQO (Health Quality Ontario). (2022). Long-Term Care Home Performance: Falls. https://www.hqontario.ca/System-Performance/Long-Term-Care-Home-Performance/Falls	
 HQO (Health Quality Ontario). (2017). Insights into Quality Improvement: Home care Impressions and observations: 2016/2017 Quality Improvement Plans. Retrieved January 6, 2020, from: http://www.hqontario.ca/Portals/0/documents/qi/qip/analysis-home-care-2016-17-en.pdf 	
 Jang, E. M., Kim, MH., Yoo, W. G. (2014). Comparison of the tibialis anterior and soleus muscles activities during the sit-to-stand movement with hip adduction and hip abduction in elderly females. Journal of Phy 1045-7. doi: 10.1589/jpts.26.1045 	sical Therapy Science, 26(7),
• Karnath, HO., & Broetz, D. (2003). Understanding and treating "pusher syndrome." Physical Therapy, 83(12), 1119–1125. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=mdc&AN=1464	0870&site=ehost-live
 Kirby, R. L., Ackroyd-Stolarz, S. A., Brown, M. G., Kirkland, S. A., & MacLeod, D. A. (1994). Wheelchair-related accidents caused by tips and falls among noninstitutionalized users of manually propelled wheelchairs i Journal Of Physical Medicine & Rehabilitation, 73(5), 319-330. 	in Nova Scotia. American
• Nishio, R., Yohei, I., Morita Y., Ito, T., Yamazaki, K., & Sakai, Y. (2019). Investigation of the functional decline in proprioceptors for low back pain using the sweep frequency. Applied Science, 9, 4988. doi:10.3390/ap	p9234988
Okunribido, O. O. (2013). Patient safety during assistant propelled wheelchair transfers: the effect of the seat cushion on risk of falling. Assistive Technology, 25, 1-8. doi: 10.1080/10400435.2012.680658	
 Suetterlin, K. J. & Sayer, A. A. (2014). Proprioception: where are we now? A commentary in clinical assessment, changes across the life course, functional implications and future interventions. Age Ageing, 43(3), 3 10.1093/ageing/aft174 	13-318. doi:
 Toosizadeh, N., Ehsani, H., Miramonte, M., & Mohler, J. (2018). Proprioceptive impairments in high fall risk older adults: the effect of mechanical calf vibration on postural balance. Biomedical Engineering Online, 3 018-0482-8 	17:51.doi: 10.1186/s12938-
• Varriano, B., Sulway, S., Wetmore, C., Dillon, W., Misquitta, K., Multani, N., & Rutka, J. (2021). Prevalence of cognitive and vestibular impairments in seniors experiencing fails. Canadian Journal of Neurological S	ciences , 48(2), 245 – 252.
doi: https://doi.org/10.1017/cjn.2020.154	
 Vermette, MJ., Prince, F., Bherer, L., & Messier, J. (2019). Interaction between proprioceptive sensitivity and the attentional demand for dynamic postural control in sedentary seniors: A pilot study. Neurophysilo 426. doi: 10.1016/j.neucl.2019.10.047 	ologie Clinique, 49(6), 423-
 Yang, K. S., van Schooten, J. Sims-Gould, H. A. McKay, F. Feldman, & S. N. Robinovitch. (2017). Sex differences in the circumstances leading to falls: Evidence from real-life falls captured on video in long-term care Medical Directors Association, 1-6. doi: 10.1016/j.jamda.2017.08.011 	Journal of the American
 Yap L. K., Au, S. Y., Ang., Y. H., & Ee C. H. (2003). Nursing home falls: a local perspective. Annals of the Academy of Medicine, Singapore, 32(6), 795 – 800. 	




Activity at time of fallNumber of falls (%)Men (N=231)Women (N=231)Walking29.240.3
Walking 29.2 40.3
Standing 25.0 23.8
Sitting down or lowering 15.9 14.3
Seated or wheeling 15.5 11.5
Getting up or rising 14.4 10.2
Slip 0.9 0.9


British Columbia LTC falls study: How do people fall? Falls captured on video in long-term care (N=529) (Vang et al., 2017)			
incorrect shift of body weight or			
excessive sway of the trunk	Number of falls	% of participants (N=529	
	1	46 %	
	2	20 %	
Falls while seated	3	10 %	
 most often due to loss of support associated with 	4	6%	
moving object (60%) or	5 or more	18 %	
sliding out of a chair (40%)			



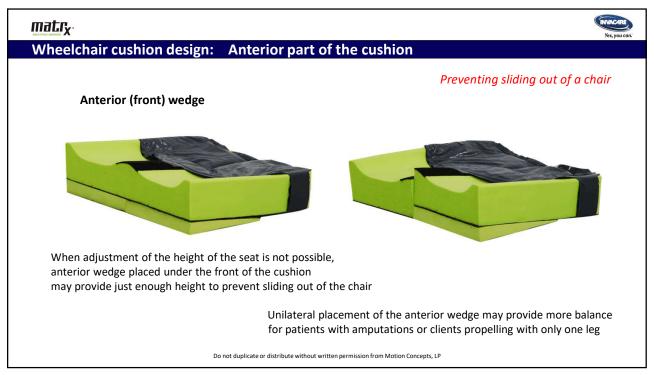
oprioception: Why is incorrect shift o	r body weight so common in seniors?
Proprioception is <u>worsened</u> with:	Proprioception is <i>improved</i> with:
 Aging (changes in muscles and nerves) Visual changes Surgical interventions in joints Arthritis or other pathological changes Injections into the joints Neuropathy Prolonged vibration Immediately after intensive exercise Spatial neglect or 'pusher syndrome' (changes in processing visual input after CVA/strokes) Iow back pain 	 Improvements in vision Regular balance training on unstable surface Short-term vibration Sensation of touching a surface/object 3-point or 4-point surface contact (e.g. back of the legs + both hands on armrests) Balanced posture of the trunk
 Low back pain (reliance on trunk proprioception with decline of proprioception in legs) Simultaneous demand for cognitive attention to dynamic postural control 	(Haibach, Slobounov, & Newell, 2009; Karnath & Broetz, 2003; Nishio et al., 2019; Toosizadeh, Ehsani, Miramonte, & Mohler, 2018; Vermette et al., 2019)

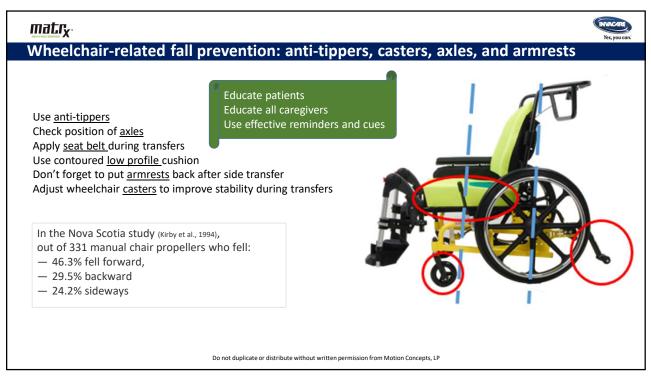
Falling while being seated or wheeled: sliding out of the wheelchair Posture – related? Wheelchair – related? Wheelchair seating - related? Image: Comparison of the wheelchair

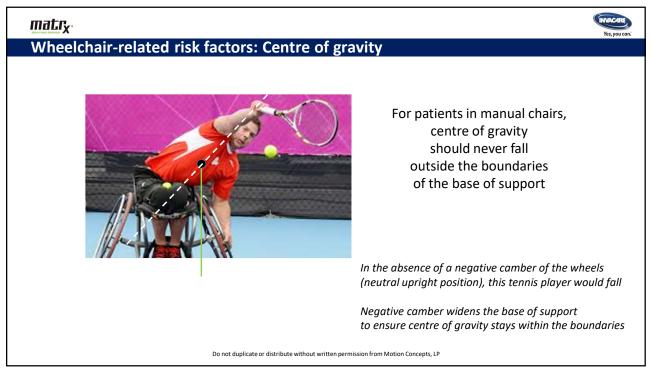
Or all the above?

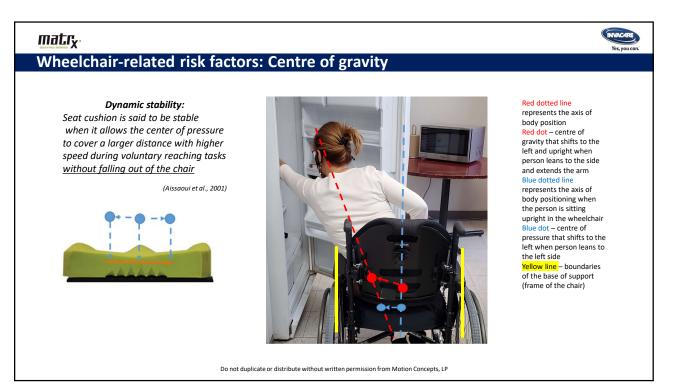
matrx

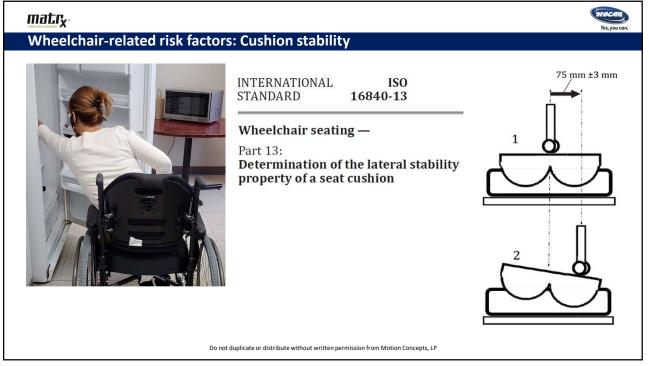
- 1. Assess patient (mat assessment)
- Assess the wheelchair
 Start from the seat, then look at the back, then the rest of the wheelchair system
- Change one thing a time and assess postural changes

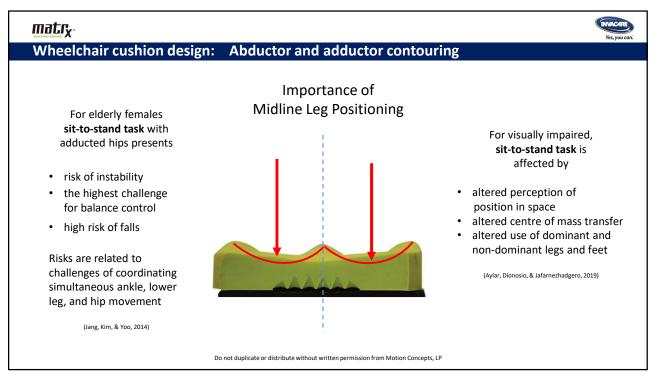


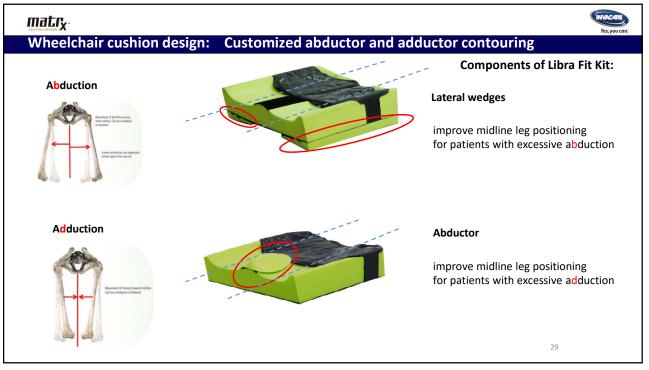


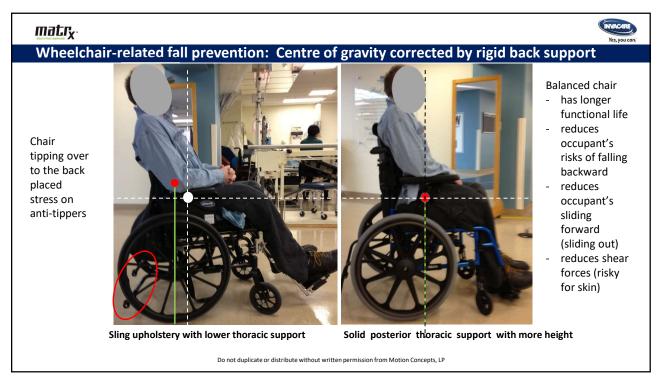


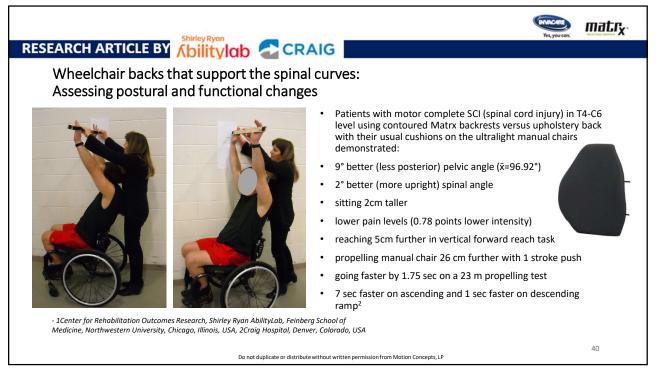


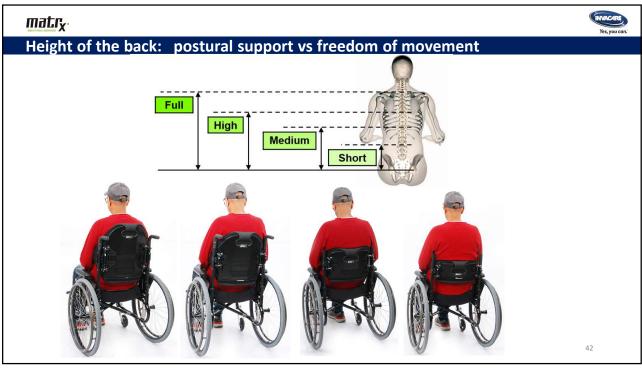


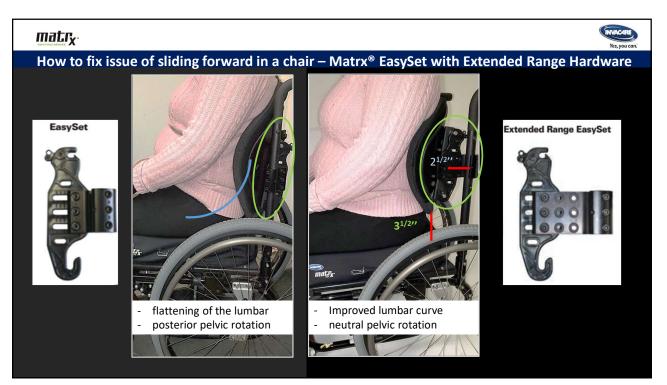


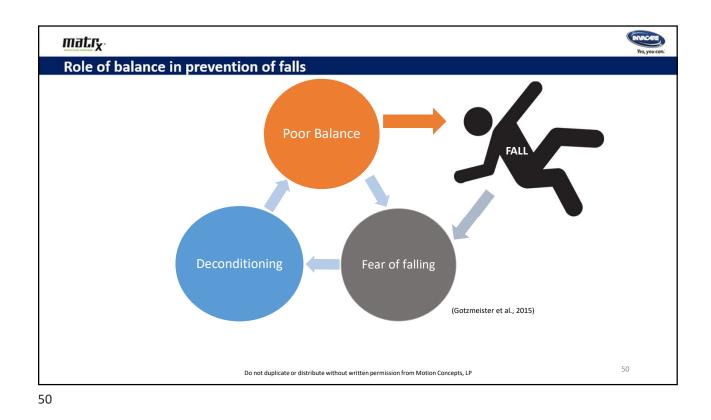




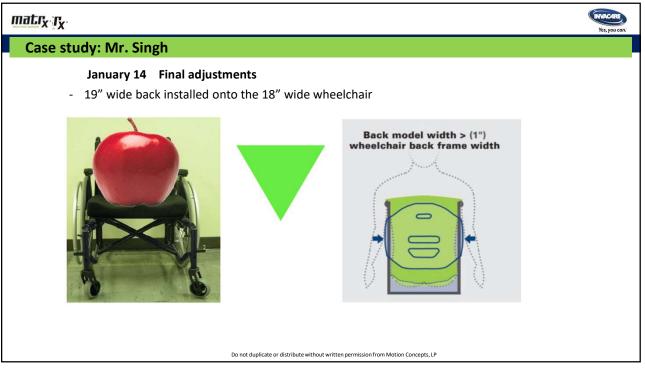




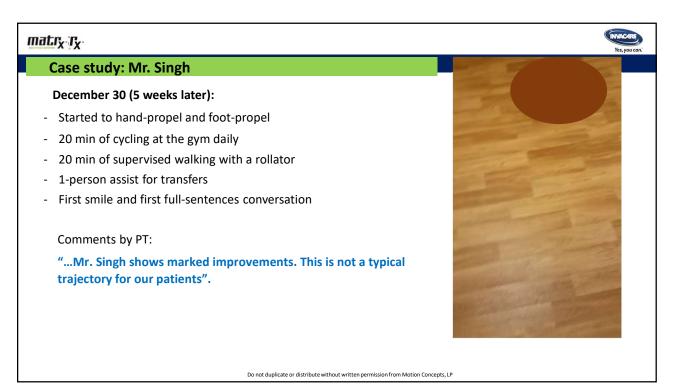


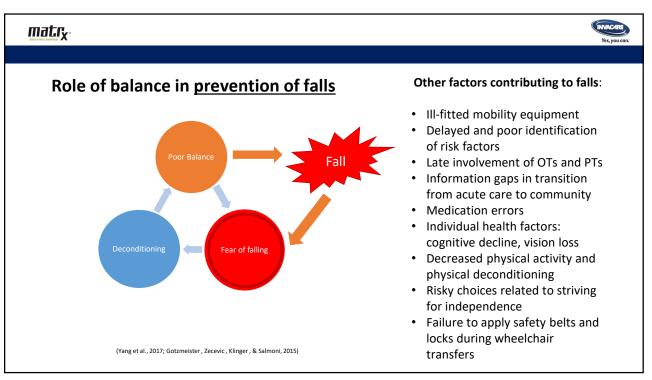


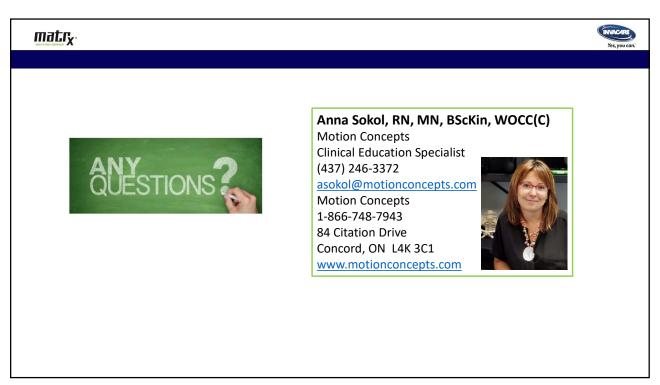
matr _x . r _x .	Ver, you can:
	Case study: Mr. Singh
	Addressing fear of falling
	Mr. Singh is 92 years old
	5 unexplained falls within 6 months
	Refusal to mobilize due to fear of falling
	Admitted to the hospital with failure to thrive
	 Treated for multiple blood clots in lower limbs, PE, and diabetes.
	 After 2 months, d/c to LTC with extreme muscle wasting, frailty, urinary incontinence
	Referred to the ADP-prescriber for a wheelchair (2 week wait)
Do not duplicate or	distribute without written permission from Motion Concepts, LP 48
3	


4	8

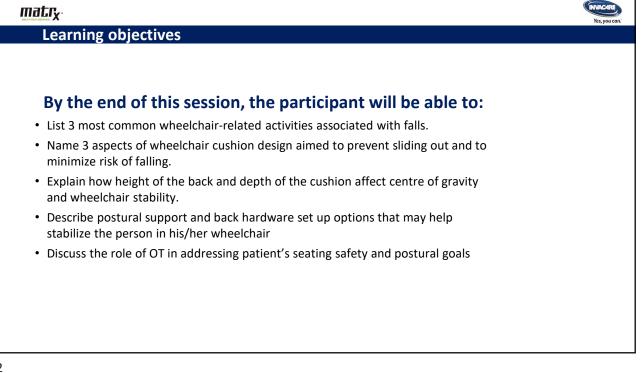
matr _x r _x	Yes, you can:
	Case study: Mr. Singh
	 November 21: LTC home provided a loaner lightweight manual chair with rigid contoured back air cushion no seat cushion rigidizer Mr. Singh was sliding forward due to seat-to-floor too high
	 After 1 week of trying, physiotherapy team requested a consult: Mr. Singh was not getting up or propelling the wheelchair wasn't communicating
Do not duplicat	e or distribute without written permission from Motion Concepts, LP 49

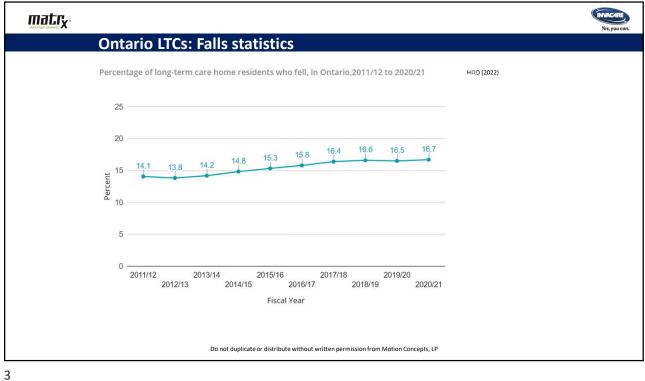

matr_x r_x


Case study: Mr. Singh

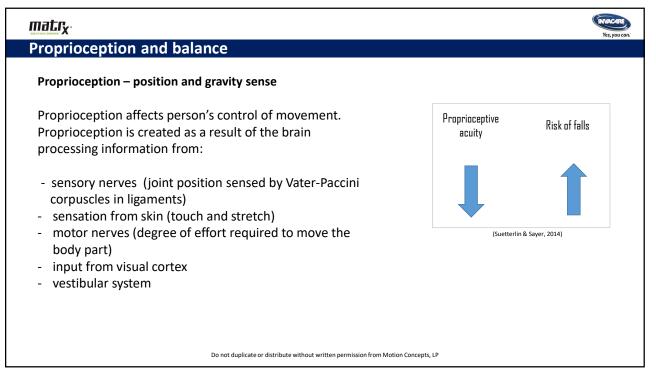

Seating products that worked:

- Proper size (18") w/c frame
- Stable skin protection & positioning cushion (1818)
- Gently contoured back 1" wider than chair frame (1918)
- Head support with adjustable mounting hardware

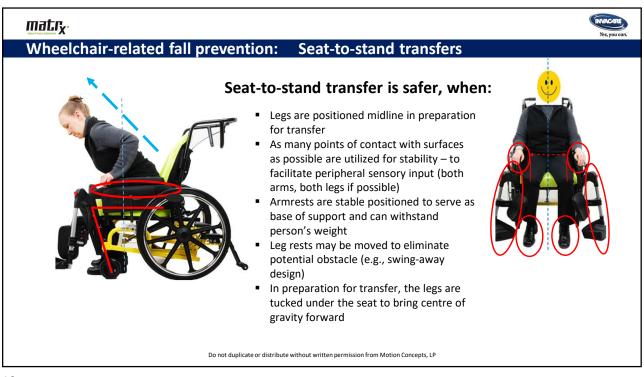


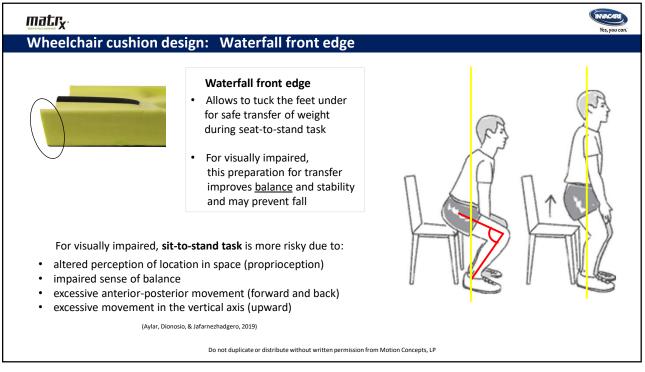


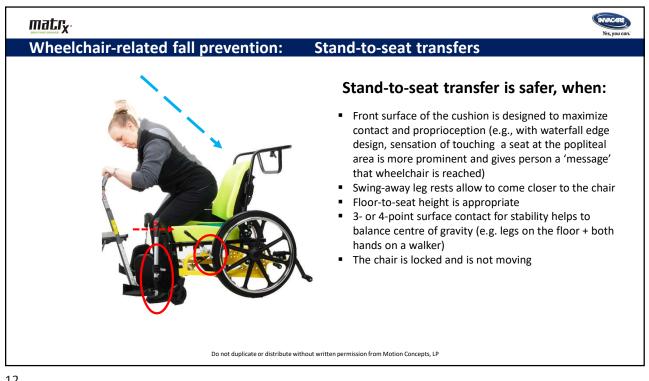
	References:
•	Aissaoul, R., Boucher, C., Bourbonnais, D., Lacoste, M., & Dansereau, J. (2001). Effect of seat cushion on dynamic stability in sitting during a reaching task in wheelchair users with paraplegia. Archives of Physical Medicine and Rehabilitation, 82, 274-281. doi: 10.1053/apmr.2001.19473
•	Aylar, M. F., Dionosio, V. C. & Jafarnezhadgero, A. A. (2019). Do the centre of mass strategies change with restricted vision during the sit-to stand task? Clinical Biomechanics, 62, 104-112.
•	Erickson, B., Hosseini, M. A., Mudhar, P. S., Soleimani, M., Aboonabi, A., Arzanpour, S., & Sparrey, C. J. (2016). The dynamics of electric powered wheelchair sideways tips and falls: experimental and computational analysis of impact forces and injury. Journal of Neuro Engineering and Rehabilitation, 13(20). doi: 10.1186/s12984-016-0128-7
•	Forslund, E.B., Jorgensen, V., Franzen, E., Opheim, A., et al. (2017). High incidence of falls and fall-related injuries in wheelchair users with spinal cord injury: a prospective study of risk indicators. Journal of Rehabilitation Medicine, 49, 144- 151. doi: 10.2340/16501977-2177
•	Gotzmeister, D., Zecevic, A. A., Klinger, L., & Salmoni, A. (2015). "People are getting lost a little bit": systemic factors that contribute to fails in community-dwelling octogenarians. Canadian Journal of Aging, 34(3), 397-410. doi: 10.1017/S071498081500015X
•	Haibach, P., Slobounov, S., & Newell, K. (2009). Egomotion and vection in young and elderly adults. Gerontology, 55(6), 637–643. https://doi.org/10.1159/000235816
•	HQO (Health Quality Ontario). (2022). Long-Term Care Home Performance: Falls. https://www.hqontario.ca/System-Performance/Long-Term-Care-Home-Performance/Falls
•	HQO (Health Quality Ontario). (2017). Insights into Quality Improvement: Home care Impressions and observations: 2016/2017 Quality Improvement Plans. Retrieved January 6, 2020, from: http://www.hqontario.ca/Portals/0/documents/qi/qip/analysis-home-care-2016-17-en.pdf
•	Jang, E. M., Kim, MH., Yoo, W. G. (2014). Comparison of the tibialis anterior and soleus muscles activities during the sit-to-stand movement with hip adduction and hip abduction in elderly females. Journal of Physical Therapy Science, 26(7), 1045-7. doi: 10.1589/jpts.26.1045
•	Karnath, HO., & Broetz, D. (2003). Understanding and treating "pusher syndrome." Physical Therapy, 83(12), 1119–1125. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=mdc&AN=14640870&site=ehost-live
•	Kirby, R. L., Ackroyd-Stolarz, S. A., Brown, M. G., Kirkland, S. A., & MacLeod, D. A. (1994). Wheelchair-related accidents caused by tips and falls among noninstitutionalized users of manually propelled wheelchairs in Nova Scotia. American Journal Of Physical Medicine & Rehabilitation, 73(5), 319-330.
·	Nishio, R., Yohei, I., Morita Y., Ito, T., Yamazaki, K., & Sakai, Y. (2019). Investigation of the functional decline in proprioceptors for low back pain using the sweep frequency. Applied Science, 9, 4988. doi:10.3390/app9234988
•	Okunribido, O. O. (2013). Patient safety during assistant propelled wheelchair transfers: the effect of the seat cushion on risk of falling. Assistive Technology, 25, 1-8. doi: 10.1080/10400435.2012.680658
•	Suetterlin, K. J. & Sayer, A. A. (2014). Proprioception: where are we now? A commentary in clinical assessment, changes across the life course, functional implications and future interventions. Age Ageing, 43(3), 313-318. doi: 10.1093/ageing/aft174
•	Toosizadeh, N., Ehsani, H., Miramonte, M., & Mohler, J. (2018). Proprioceptive impairments in high fall risk older adults: the effect of mechanical calf vibration on postural balance. Biomedical Engineering Online, 17:51.doi: 10.1186/s12938-018-0482-8
•	Varriano, B., Sulway, S., Wetmore, C., Dillon, W., Misquitta, K., Multani, N., & Rutka, J. (2021). Prevalence of cognitive and vestibular impairments in seniors experiencing fails. Conadian Journal of Neurological Sciences , 48(2), 245 – 252.
•	doi: https://doi.org/10.1017/cjn.2020.154
•	Vermette, MJ., Prince, F., Bherer, L., & Messier, J. (2019). Interaction between proprioceptive sensitivity and the attentional demand for dynamic postural control in sedentary seniors: A pilot study. Neurophysilologie Clinique, 49(6), 423- 426. doi: 10.1016/j.neucl.2019.10.047
·	Yang, K. S., van Schooten, J. Sims-Gould, H. A. McKay, F. Feldman, & S. N. Robinovitch. (2017). Sex differences in the circumstances leading to falls: Evidence from real-life falls captured on video in long-term care. Journal of the American Medical Directors Association, 1-6. doi: 10.1016/j.jamda.2017.08.011
·	Yap L. K., Au, S. Y., Ang., Y. H., & Ee C. H. (2003). Nursing home falls: a local perspective. Annals of the Academy of Medicine, Singapore, 32(6), 795 – 800.



Falls captured on video in long-term care (Yang et al., 2017)		
Activity at time of fall	Number of falls (%	
	Men (N=231)	Women (N=298)
Walking	29.2	40.3
Standing	25.0	23.8
Sitting down or lowering	15.9	14.3
Seated or wheeling	15.5	11.5
Getting up or rising	14.4	10.2
Slip	0.9	0.9


E	British Columbia LTC falls study: How do pe	ople fall?			
F	alls captured on video in long-term care (N=52	29) et al., 2017)			
	Falls while getting up 40% were associated with moving objects and loss of support	t			
-	- most often due to Number of falls suffered:				
	incorrect shift of body weight or				
	excessive sway of the trunk	Number of falls	% of participants (N=529		
		1	46 %		
	alls while seated	2	20 %		
r		3	10 % 6 %		
-	most often due to loss of support associated with	5 or more	18 %		
	moving object (60%) or	5 of more	10 /0		
	sliding out of a chair (40%)				




oprioception: Why is incorrect shift o	f body weight so common in seniors?
Proprioception is <u>worsened</u> with:	Proprioception is <i>improved</i> with:
 Aging (changes in muscles and nerves) Visual changes Surgical interventions in joints Arthritis or other pathological changes Injections into the joints Neuropathy Prolonged vibration Immediately after intensive exercise Spatial neglect or 'pusher syndrome' (changes in processing visual input after CVA/strokes) 	 Improvements in vision Regular balance training on unstable surface Short-term vibration Sensation of touching a surface/object 3-point or 4-point surface contact (e.g. back of the legs + both hands on armrests) Balanced posture of the trunk
 Low back pain (reliance on trunk proprioception with decline of proprioception in legs) Simultaneous demand for cognitive attention to dynamic postural control 	(Haibach, Slobounov, & Newell, 2009; Karnath & Broetz, 2003; Nishio et al., 2019; Toosizadeh, Ehsani, Miramonte, & Mohler, 2018; Vermette et al., 2019)

Falling while being seated or wheeled: sliding out of the wheelchair Posture – related? Wheelchair – related?

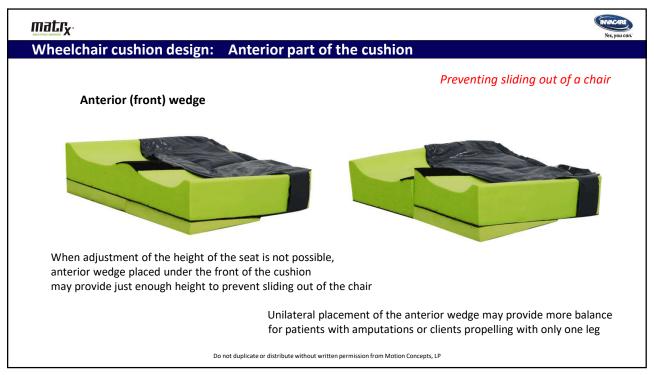
Or all the above?

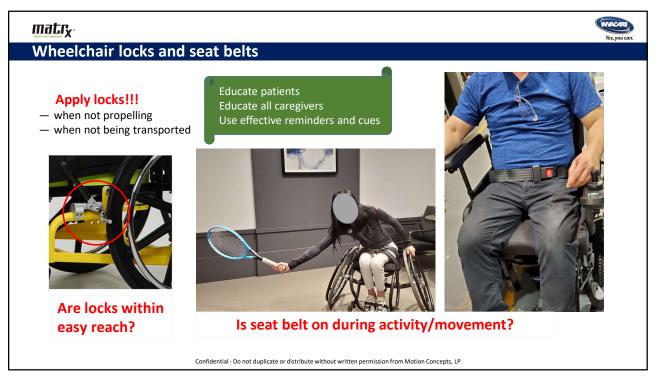
matrx

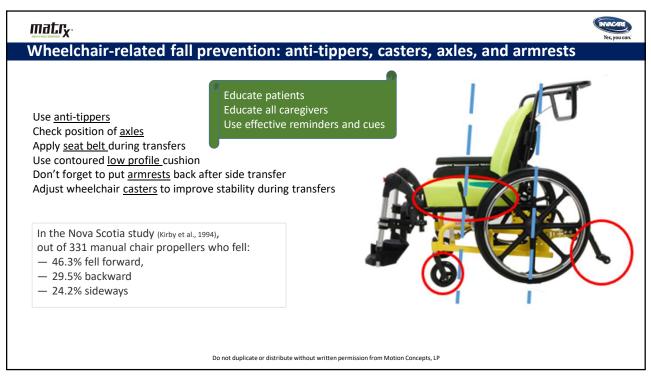
- 1. Assess patient (mat assessment)
- Assess the wheelchair
 Start from the seat, then look at the back, then the rest of the wheelchair system

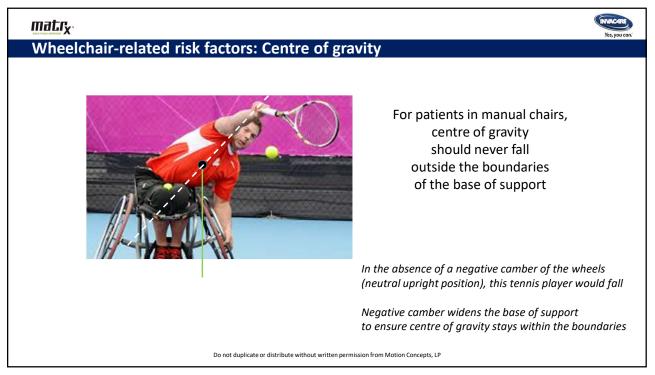
Wheelchair seating - related?

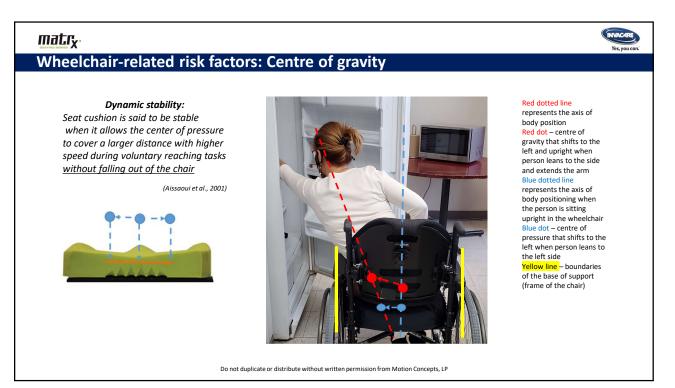
- Change one thing a time and assess postural changes



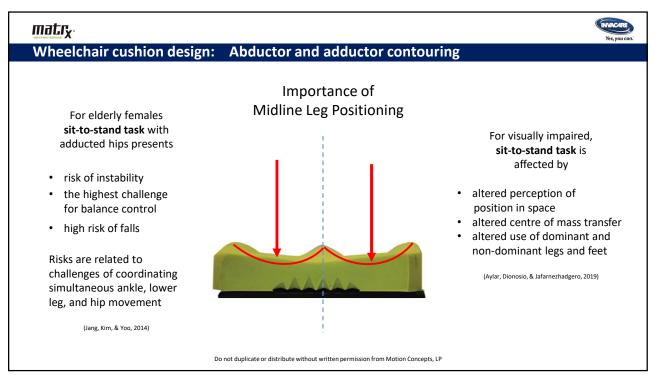


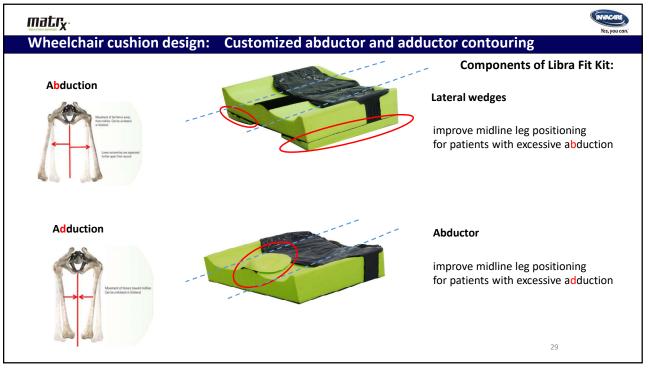


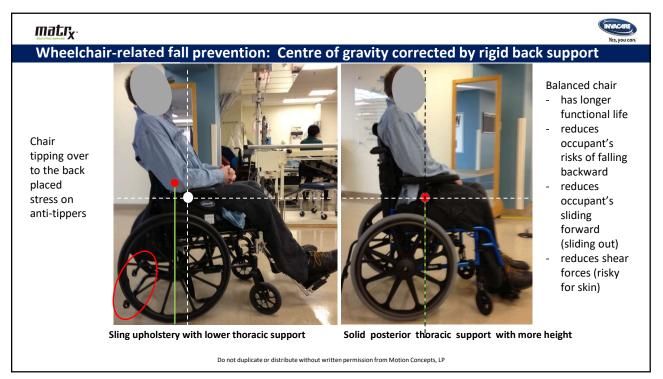


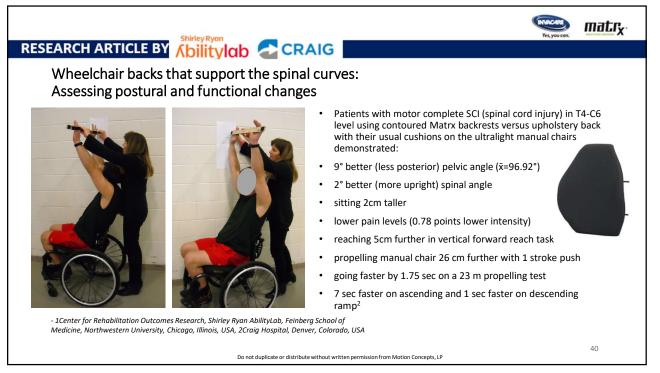


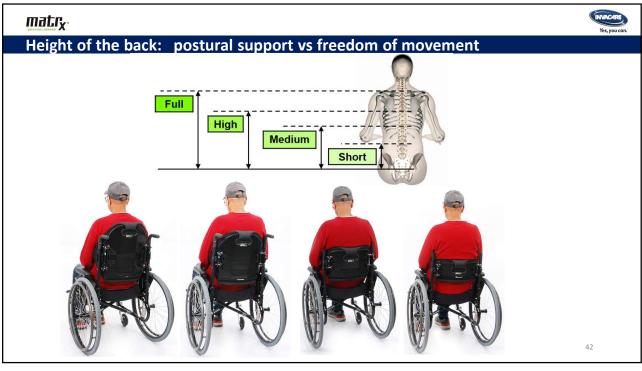


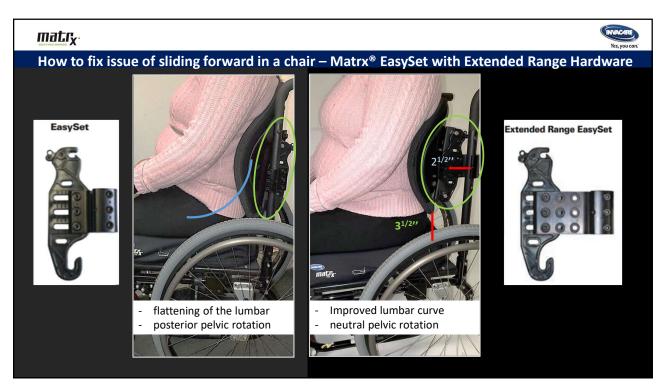


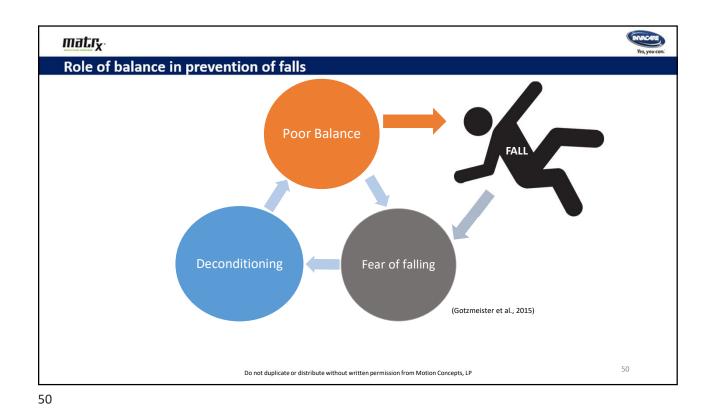


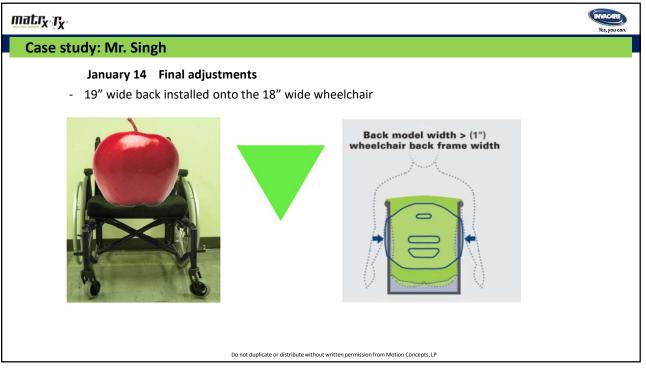




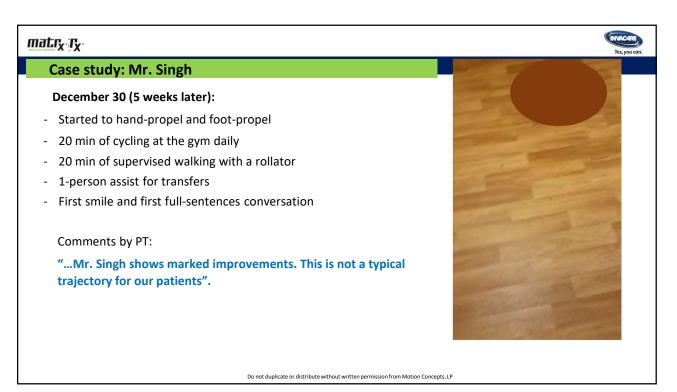


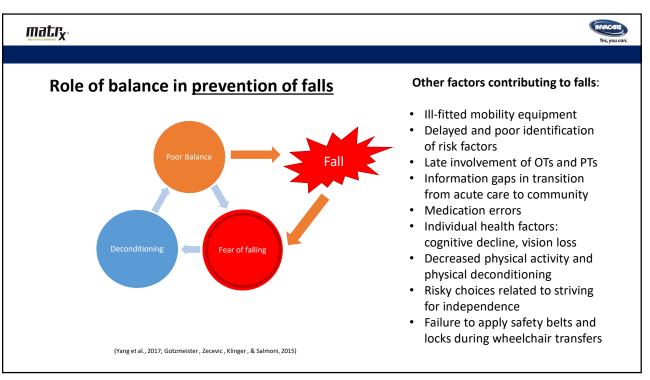


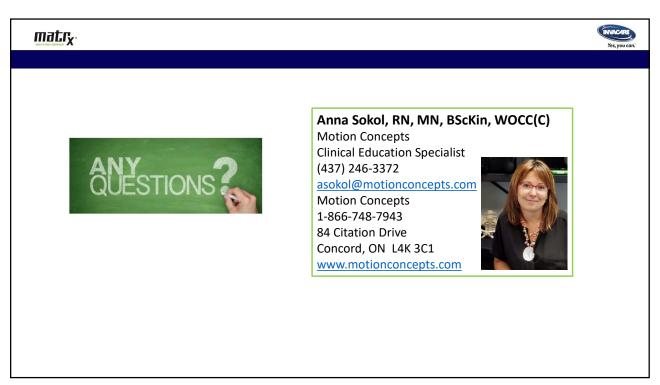



	Yes, you co
	Case study: Mr. Singh
	Addressing fear of falling
	Mr. Singh is 92 years old
	5 unexplained falls within 6 months
	Refusal to mobilize due to fear of falling
	Admitted to the hospital with failure to thrive
	Treated for multiple blood clots in lower limbs, PE, and diabetes.
	After 2 months, d/c to LTC with extreme muscle wasting, frailty, urinary incontinence
	Referred to the ADP-prescriber for a wheelchair (2 week wait)
Do not du	plicate or distribute without written permission from Motion Concepts, LP 48

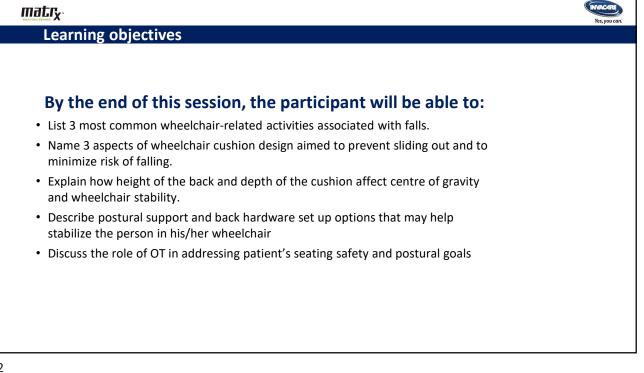
matr _x . I _X .	Yes, you can:
	Case study: Mr. Singh November 21: LTC home provided a loaner lightweight manual chair with rigid contoured back air cushion no seat cushion rigidizer Mr. Singh was sliding forward due to seat-to-floor too high
	After 1 week of trying, physiotherapy team requested a consult: - Mr. Singh was not getting up or propelling the wheelchair - wasn't communicating
Do not duplica	te or distribute without written permission from Motion Concepts, LP 49

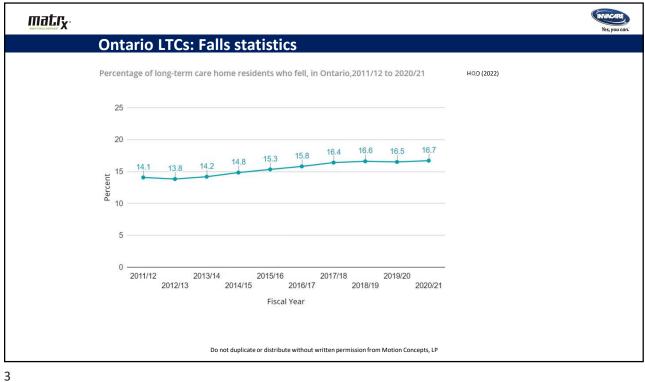

matr_x r_x


Case study: Mr. Singh

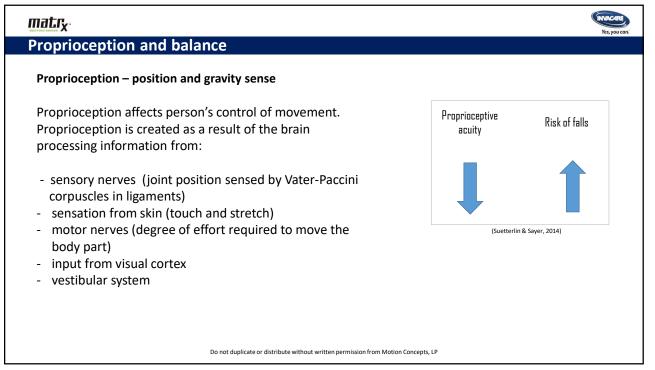

Seating products that worked:

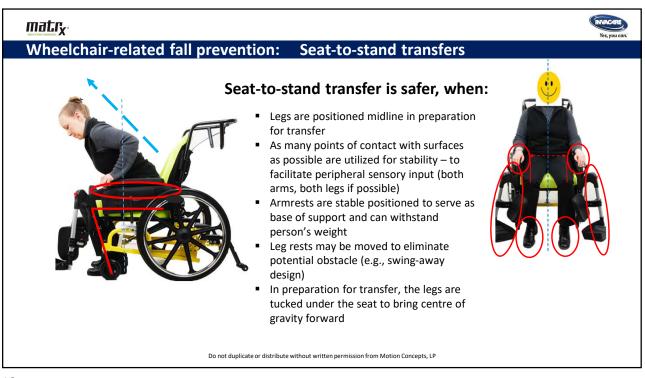
- Proper size (18") w/c frame
- Stable skin protection & positioning cushion (1818)
- Gently contoured back 1" wider than chair frame (1918)
- Head support with adjustable mounting hardware

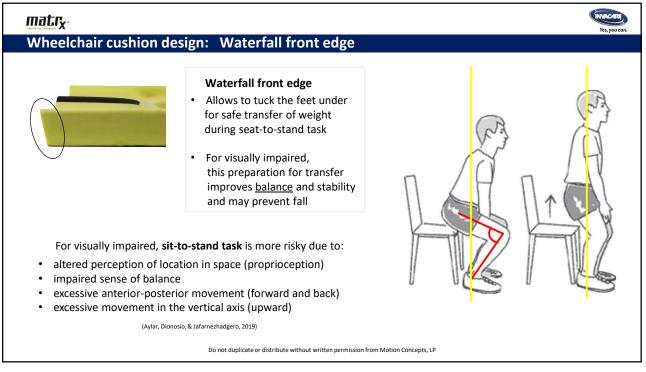


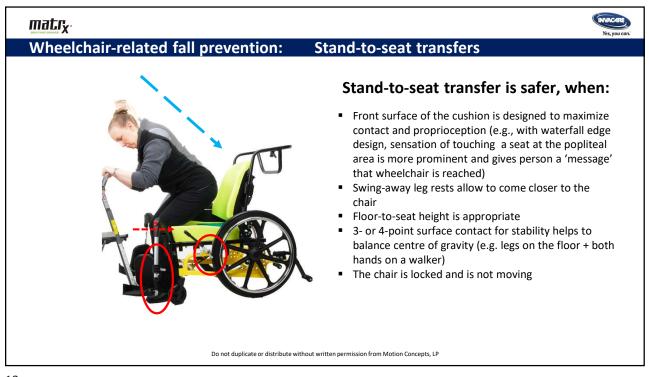


matrx	Yes, you can:
References:	
 Aissaoui, R., Boucher, C., Bourbonnais, D., Lacoste, M., & Dansereau, J. (2001). Effect of seat cushion on dynamic stability in sitting during a reaching task in wheelchair users with paraplegia. Archives of Physical M 82, 274-281. doi: 10.1053/apmr.2001.19473 	ledicine and Rehabilitation,
• Aylar, M. F., Dionosio, V. C. & Jafarnezhadgero, A. A. (2019). Do the centre of mass strategies change with restricted vision during the sit-to stand task? Clinical Biomechanics, 62, 104-112.	
 Erickson, B., Hosseini, M. A., Mudhar, P. S., Soleimani, M., Aboonabi, A., Arzanpour, S., & Sparrey, C. J. (2016). The dynamics of electric powered wheelchair sideways tips and falls: experimental and computationa and injury. Journal of Neuro Engineering and Rehabilitation, 13(20). doi: 10.1186/s12984-016-0128-7 	al analysis of impact forces
 Forslund, E.B., Jorgensen, V., Franzen, E., Opheim, A., et al. (2017). High incidence of falls and fall-related injuries in wheelchair users with spinal cord injury: a prospective study of risk indicators. Journal of Rehabi 151. doi: 10.2340/16501977-2177 	litation Medicine, 49, 144-
 Gotzmeister, D., Zecevic, A. A., Klinger, L., & Salmoni, A. (2015). "People are getting lost a little bit": systemic factors that contribute to falls in community-dwelling octogenarians. Canadian Journal of Aging, 34(3), 10.1017/S071498081500015X 	397-410. doi:
 Haibach, P., Slobounov, S., & Newell, K. (2009). Egomotion and vection in young and elderly adults. Gerontology, 55(6), 637–643. https://doi.org/10.1159/000235816 	
HQO (Health Quality Ontario). (2022). Long-Term Care Home Performance: Falls. https://www.hqontario.ca/System-Performance/Long-Term-Care-Home-Performance/Falls	
 HQO (Health Quality Ontario). (2017). Insights into Quality Improvement: Home care Impressions and observations: 2016/2017 Quality Improvement Plans. Retrieved January 6, 2020, from: http://www.hqontario.ca/Portals/0/documents/qi/qip/analysis-home-care-2016-17-en.pdf 	
 Jang, E. M., Kim, MH., Yoo, W. G. (2014). Comparison of the tibialis anterior and soleus muscles activities during the sit-to-stand movement with hip adduction and hip abduction in elderly females. Journal of Phy 1045-7. doi: 10.1589/jpts.26.1045 	sical Therapy Science, 26(7),
• Karnath, HO., & Broetz, D. (2003). Understanding and treating "pusher syndrome." Physical Therapy, 83(12), 1119–1125. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=mdc&AN=1464	0870&site=ehost-live
 Kirby, R. L., Ackroyd-Stolarz, S. A., Brown, M. G., Kirkland, S. A., & MacLeod, D. A. (1994). Wheelchair-related accidents caused by tips and falls among noninstitutionalized users of manually propelled wheelchairs i Journal Of Physical Medicine & Rehabilitation, 73(5), 319-330. 	in Nova Scotia. American
• Nishio, R., Yohei, I., Morita Y., Ito, T., Yamazaki, K., & Sakai, Y. (2019). Investigation of the functional decline in proprioceptors for low back pain using the sweep frequency. Applied Science, 9, 4988. doi:10.3390/ap	p9234988
Okunribido, O. O. (2013). Patient safety during assistant propelled wheelchair transfers: the effect of the seat cushion on risk of falling. Assistive Technology, 25, 1-8. doi: 10.1080/10400435.2012.680658	
 Suetterlin, K. J. & Sayer, A. A. (2014). Proprioception: where are we now? A commentary in clinical assessment, changes across the life course, functional implications and future interventions. Age Ageing, 43(3), 3 10.1093/ageing/aft174 	13-318. doi:
 Toosizadeh, N., Ehsani, H., Miramonte, M., & Mohler, J. (2018). Proprioceptive impairments in high fall risk older adults: the effect of mechanical calf vibration on postural balance. Biomedical Engineering Online, 3 018-0482-8 	17:51.doi: 10.1186/s12938-
• Varriano, B., Sulway, S., Wetmore, C., Dillon, W., Misquitta, K., Multani, N., & Rutka, J. (2021). Prevalence of cognitive and vestibular impairments in seniors experiencing fails. Canadian Journal of Neurological S	ciences , 48(2), 245 – 252.
doi: https://doi.org/10.1017/cjn.2020.154	
 Vermette, MJ., Prince, F., Bherer, L., & Messier, J. (2019). Interaction between proprioceptive sensitivity and the attentional demand for dynamic postural control in sedentary seniors: A pilot study. Neurophysilo 426. doi: 10.1016/j.neucl.2019.10.047 	ologie Clinique, 49(6), 423-
 Yang, K. S., van Schooten, J. Sims-Gould, H. A. McKay, F. Feldman, & S. N. Robinovitch. (2017). Sex differences in the circumstances leading to falls: Evidence from real-life falls captured on video in long-term care Medical Directors Association, 1-6. doi: 10.1016/j.jamda.2017.08.011 	Journal of the American
 Yap L. K., Au, S. Y., Ang., Y. H., & Ee C. H. (2003). Nursing home falls: a local perspective. Annals of the Academy of Medicine, Singapore, 32(6), 795 – 800. 	




Falls captured on video in long-term care (Yang et al., 2017)		
Activity at time of fall	Number of falls (%	
	Men (N=231)	Women (N=298)
Walking	29.2	40.3
Standing	25.0	23.8
Sitting down or lowering	15.9	14.3
Seated or wheeling	15.5	11.5
Getting up or rising	14.4	10.2
Slip	0.9	0.9


British Columbia LTC falls study: How do pe	ople fall?	
Falls captured on video in long-term care (N=52 (Yang	29) .et al., 2017)	
 Falls while getting up 40% were associated with moving objects and loss of suppor most often due to 	rt Number of falls suf	fered:
incorrect shift of body weight or		
excessive sway of the trunk	Number of falls	% of participants (N=529
	1	46 %
	2	20 %
Falls while seated	3	10 %
 most often due to loss of support associated with 	4	6%
moving object (60%) or	5 or more	18 %
sliding out of a chair (40%)		



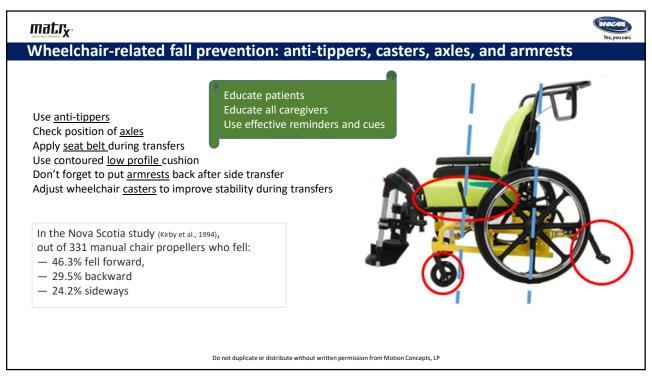
oprioception: Why is incorrect shift o	r body weight so common in seniors?
Proprioception is <u>worsened</u> with:	Proprioception is <i>improved</i> with:
 Aging (changes in muscles and nerves) Visual changes Surgical interventions in joints Arthritis or other pathological changes Injections into the joints Neuropathy Prolonged vibration Immediately after intensive exercise Spatial neglect or 'pusher syndrome' (changes in processing visual input after CVA/strokes) Iow back pain 	 Improvements in vision Regular balance training on unstable surface Short-term vibration Sensation of touching a surface/object 3-point or 4-point surface contact (e.g. back of the legs + both hands on armrests) Balanced posture of the trunk
 Low back pain (reliance on trunk proprioception with decline of proprioception in legs) Simultaneous demand for cognitive attention to dynamic postural control 	(Haibach, Slobounov, & Newell, 2009; Karnath & Broetz, 2003; Nishio et al., 2019; Toosizadeh, Ehsani, Miramonte, & Mohler, 2018; Vermette et al., 2019)

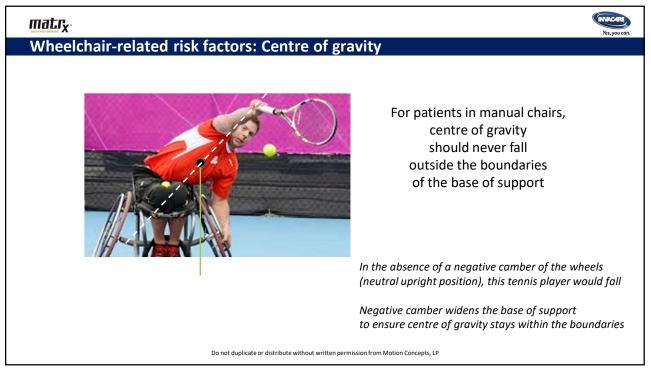
Falling while being seated or wheeled: sliding out of the wheelchair Posture – related? Wheelchair – related? Wheelchair seating - related? Image: Comparison of the seating - related?

Or all the above?

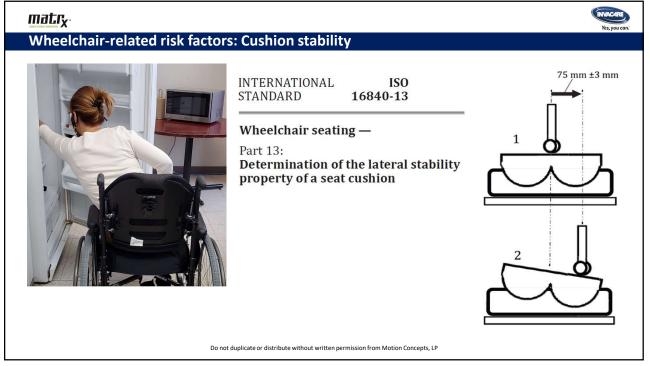
matrx

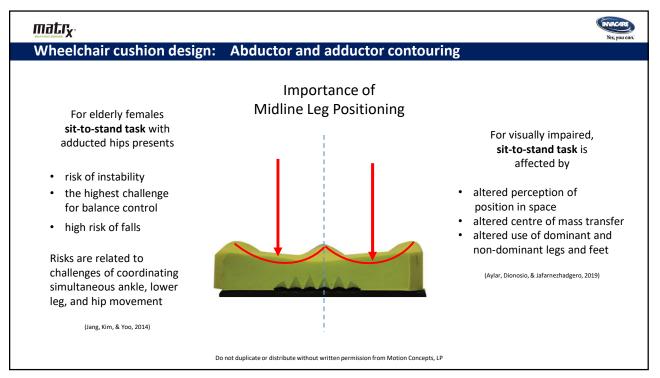
- 1. Assess patient (mat assessment)
- Assess the wheelchair
 Start from the seat, then look at the back, then the
- rest of the wheelchair system
 Change one thing a time and assess postural changes

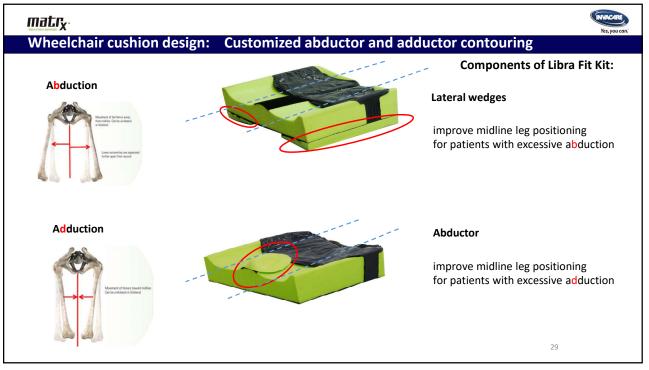


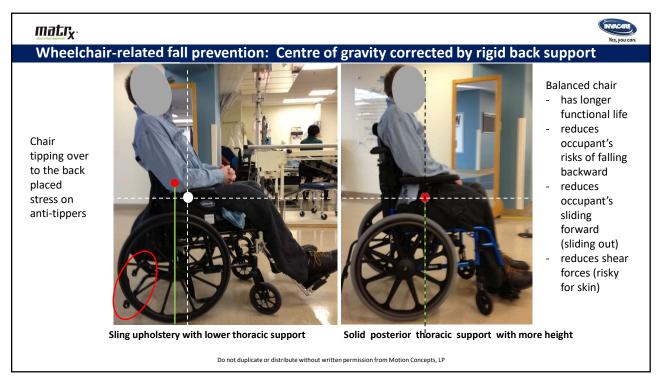


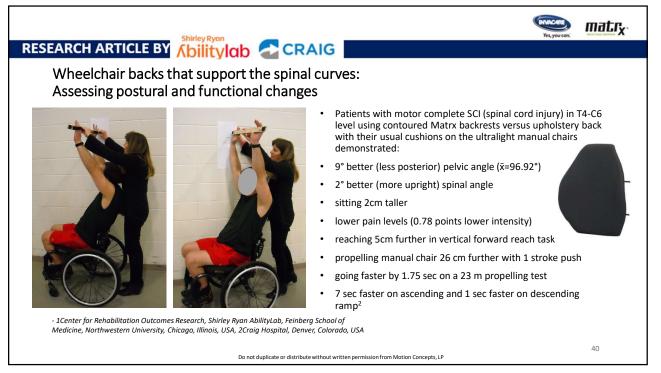


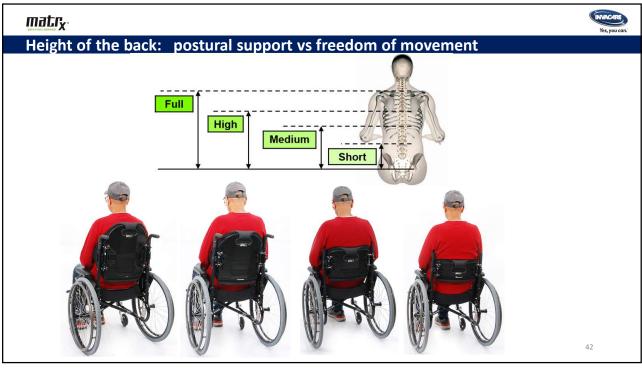


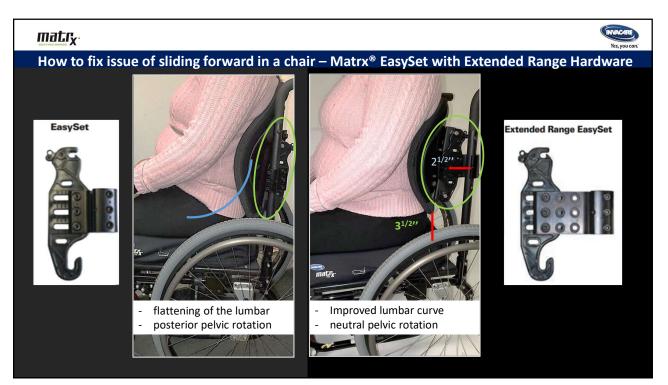


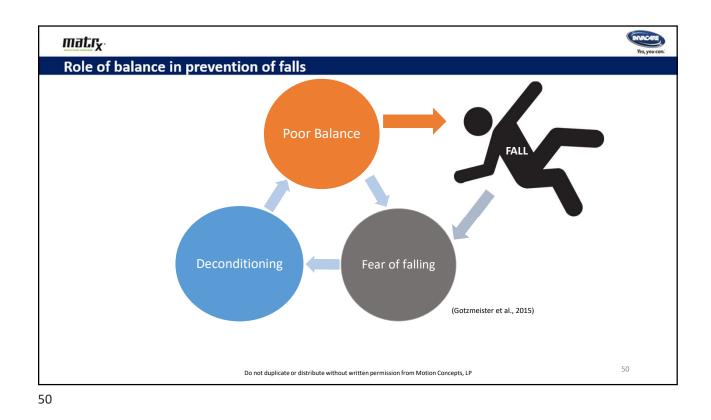


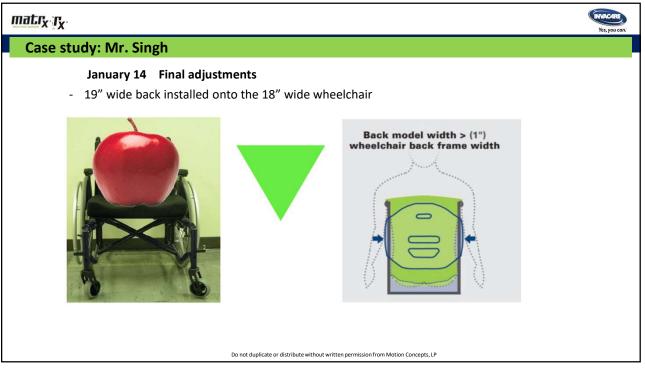




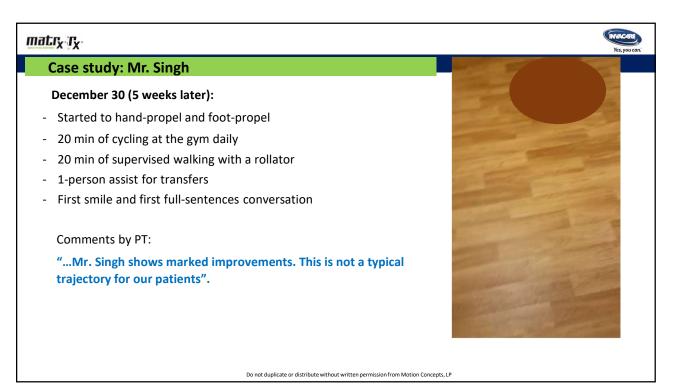


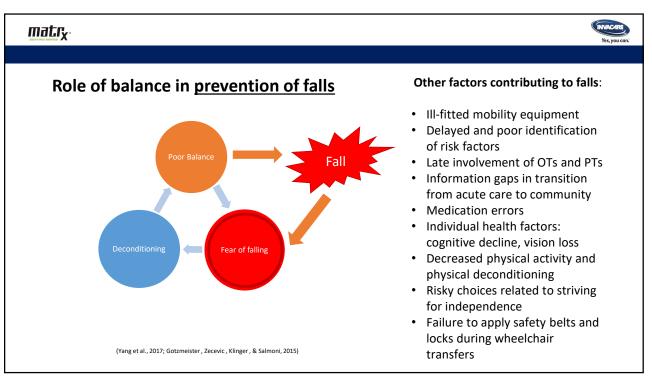


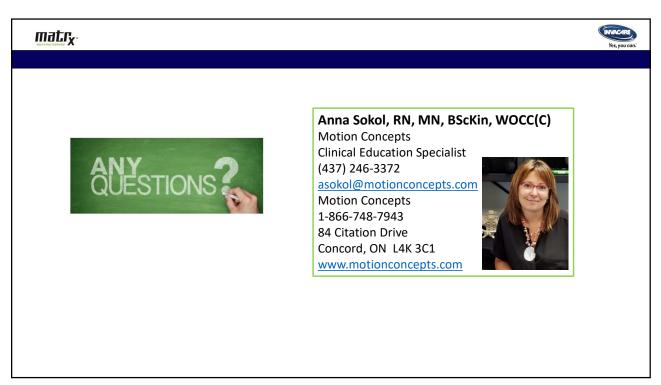



 Case study: Mr. Singh Addressing fear of falling Mr. Singh is 92 years old S unexplained falls within 6 months Refusal to mobilize due to fear of falling Admitted to the hospital with failure to thrive Treated for multiple blood clots in lower limbs, PE, and diabetes. After 2 months, d/c to LTC with extreme muscle wasting, frailty, urinary incontinence Referred to the ADP-prescriber for a wheelchair (2 week wait) 	matr _x .r _x .	Yex, you can
 Mr. Singh is 92 years old S unexplained falls within 6 months Refusal to mobilize due to fear of falling Admitted to the hospital with failure to thrive Treated for multiple blood clots in lower limbs, PE, and diabetes. After 2 months, d/c to LTC with extreme muscle wasting, frailty, urinary incontinence 		Case study: Mr. Singh
 S unexplained falls within 6 months Refusal to mobilize due to fear of falling Admitted to the hospital with failure to thrive Treated for multiple blood clots in lower limbs, PE, and diabetes. After 2 months, d/c to LTC with extreme muscle wasting, frailty, urinary incontinence 		Addressing fear of falling
 Refusal to mobilize due to fear of falling Admitted to the hospital with failure to thrive Treated for multiple blood clots in lower limbs, PE, and diabetes. After 2 months, d/c to LTC with extreme muscle wasting, frailty, urinary incontinence 		Mr. Singh is 92 years old
 Admitted to the hospital with failure to thrive Treated for multiple blood clots in lower limbs, PE, and diabetes. After 2 months, d/c to LTC with extreme muscle wasting, frailty, urinary incontinence 		5 unexplained falls within 6 months
 Treated for multiple blood clots in lower limbs, PE, and diabetes. After 2 months, d/c to LTC with extreme muscle wasting, frailty, urinary incontinence 		Refusal to mobilize due to fear of falling
diabetes. • After 2 months, d/c to LTC with extreme muscle wasting, frailty, urinary incontinence		Admitted to the hospital with failure to thrive
urinary incontinence		
Referred to the ADP-prescriber for a wheelchair (2 week wait)		
		Referred to the ADP-prescriber for a wheelchair (2 week wait)
Do not duplicate or distribute without written permission from Motion Concepts, LP 48	Do not duplicate o	or distribute without written permission from Motion Concepts, LP 48

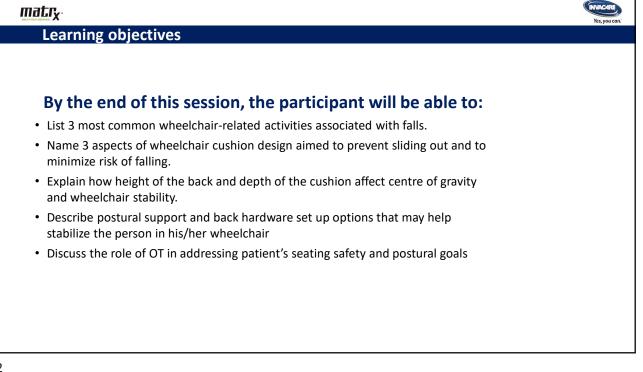
matr _x .T _x .	Yes, you can:
	Case study: Mr. Singh November 21: LTC home provided a loaner lightweight manual chair with rigid contoured back air cushion no seat cushion rigidizer Mr. Singh was sliding forward due to seat-to-floor too high After 1 week of trying, physiotherapy team requested a consult: Mr. Singh was not getting up or propelling the wheelchair Wasn't communicating
Do not duplicate	e or distribute without written permission from Motion Concepts, LP 4-2

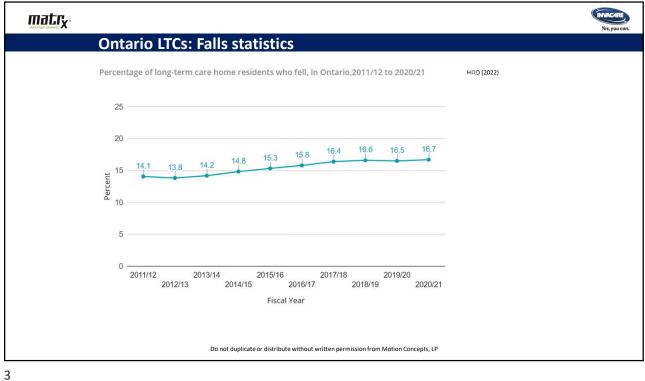

matr_x r_x


Case study: Mr. Singh

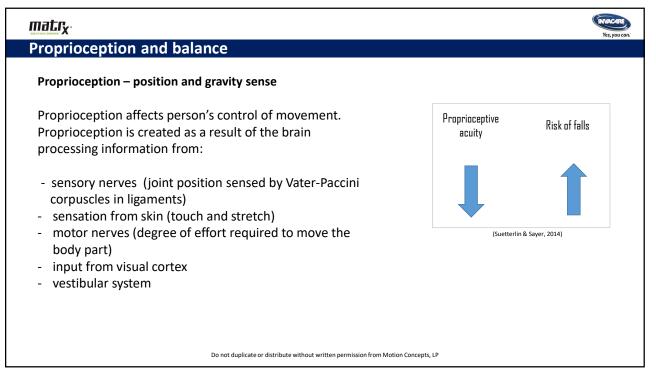

Seating products that worked:

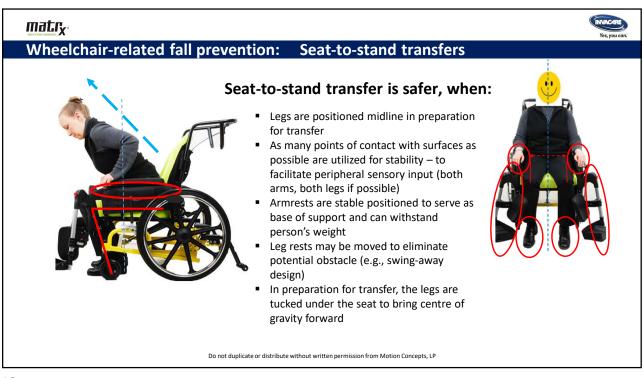
- Proper size (18") w/c frame
- Stable skin protection & positioning cushion (1818)
- Gently contoured back 1" wider than chair frame (1918)
- Head support with adjustable mounting hardware

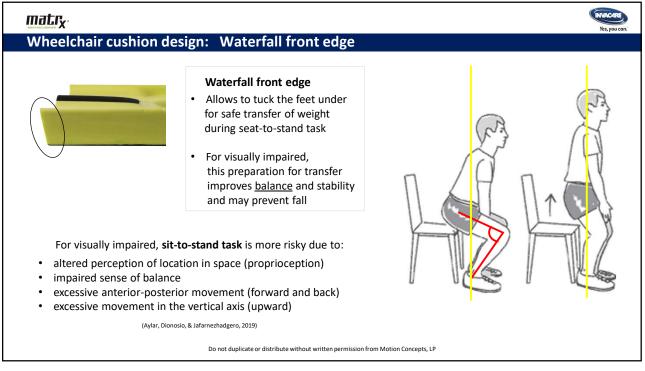


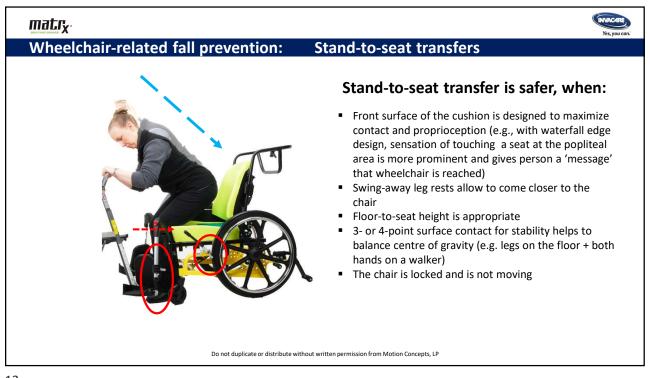


	References:
•	Alssaoui, R., Boucher, C., Bourbonnais, D., Lacoste, M., & Dansereau, J. (2001). Effect of seat cushion on dynamic stability in sitting during a reaching task in wheelchair users with paraplegia. Archives of Physical Medicine and Rehabilitation, 82, 274-281. doi: 10.1053/apmr.2001.19473
•	Aylar, M. F., Dionosio, V. C. & Jafarnezhadgero, A. A. (2019). Do the centre of mass strategies change with restricted vision during the sit-to stand task? Clinical Biomechanics, 62, 104-112.
•	Erickson, B., Hosseini, M. A., Mudhar, P. S., Soleimani, M., Aboonabi, A., Arzanpour, S., & Sparrey, C. J. (2016). The dynamics of electric powered wheelchair sideways tips and falls: experimental and computational analysis of impact forces and injury. Journal of Neuro Engineering and Rehabilitation, 13(20). doi: 10.1186/s12984-016-0128-7
•	Forslund, E.B., Jorgensen, V., Franzen, E., Opheim, A., et al. (2017). High incidence of falls and fall-related injuries in wheelchair users with spinal cord injury: a prospective study of risk indicators. Journal of Rehabilitation Medicine, 49, 144- 151. doi: 10.2340/16501977-2177
·	Gotzmeister, D., Zecevic, A. A., Klinger, L., & Salmoni, A. (2015). "People are getting lost a little bit": systemic factors that contribute to falls in community-dwelling octogenarians. Canadian Journal of Aging, 34(3), 397-410. doi: 10.1017/S071498081500015X
•	Haibach, P., Slobounov, S., & Newell, K. (2009). Egomotion and vection in young and elderly adults. Gerontology, 55(6), 637–643. https://doi.org/10.1159/000235816
•	HQO (Health Quality Ontario). (2022). Long-Term Care Home Performance: Falls. https://www.hqontario.ca/System-Performance/Long-Term-Care-Home-Performance/Falls
•	HQO (Health Quality Ontario). (2017). Insights into Quality Improvement: Home care Impressions and observations: 2016/2017 Quality Improvement Plans. Retrieved January 6, 2020, from: http://www.hqontario.ca/Portals/0/documents/qi/qip/analysis-home-care-2016-17-en.pdf
•	Jang, E. M., Kim, MH., Yoo, W. G. (2014). Comparison of the tibialis anterior and soleus muscles activities during the sit-to-stand movement with hip adduction and hip abduction in elderly females. Journal of Physical Therapy Science, 26(7), 1045-7. doi: 10.1589/jpts.26.1045
•	Karnath, HO., & Broetz, D. (2003). Understanding and treating "pusher syndrome." Physical Therapy, 83(12), 1119–1125. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=mdc&AN=14640870&site=ehost-live
•	Kirby, R. L., Ackroyd-Stolarz, S. A., Brown, M. G., Kirkland, S. A., & MacLeod, D. A. (1994). Wheelchair-related accidents caused by tips and falls among noninstitutionalized users of manually propelled wheelchairs in Nova Scotia. American Journal Of Physical Medicine & Rehabilitation, 73(5), 819-330.
•	Nishio, R., Yohei, I., Morita Y., Ito, T., Yamazaki, K., & Sakai, Y. (2019). Investigation of the functional decline in proprioceptors for low back pain using the sweep frequency. Applied Science, 9, 4988. doi:10.3390/app9234988
•	Okunribido, O. O. (2013). Patient safety during assistant propelled wheelchair transfers: the effect of the seat cushion on risk of falling. Assistive Technology, 25, 1-8. doi: 10.1080/10400435.2012.680658
•	Suetterlin, K. J. & Sayer, A. A. (2014). Proprioception: where are we now? A commentary in clinical assessment, changes across the life course, functional implications and future interventions. Age Ageing, 43(3), 313-318. doi: 10.1093/ageing/aft174
•	Toosizadeh, N., Ehsani, H., Miramonte, M., & Mohler, J. (2018). Proprioceptive impairments in high fall risk older adults: the effect of mechanical calf vibration on postural balance. Biomedical Engineering Online, 17:51.doi: 10.1186/s12938-018-0482-8
•	Varriano, B., Sulway, S., Wetmore, C., Dillon, W., Misquitta, K., Multani, N., & Rutka, J. (2021). Prevalence of cognitive and vestibular impairments in seniors experiencing falls. Canadian Journal of Neurological Sciences, 48(2), 245 – 252.
•	doi: https://doi.org/10.1017/cjn.2020.154
•	Vermette, MJ., Prince, F., Bherer, L., & Messier, J. (2019). Interaction between proprioceptive sensitivity and the attentional demand for dynamic postural control in sedentary seniors: A pilot study. Neurophysilologie Clinique, 49(6), 423-426. doi: 10.1016/j.neucl.2019.10.047
•	Yang, K. S., van Schooten, J. Sims-Gould, H. A. McKay, F. Feldman, & S. N. Robinovitch. (2017). Sex differences in the circumstances leading to falls: Evidence from real-life falls captured on video in long-term care. Journal of the American Medical Directors Association, 1-6. doi: 10.1016/j.jamda.2017.08.011
•	Yap L. K., Au, S. Y., Ang., Y. H., & Ee C. H. (2003). Nursing home falls: a local perspective. Annals of the Academy of Medicine, Singapore, 32(6), 795 – 800.




	Falls captured on video in long-term care (Yang et al., 2017)				
Activity at time of fall	Number of falls (%)				
	Men (N=231)	Women (N=298)			
Walking	29.2	40.3			
Standing	25.0	23.8			
Sitting down or lowering	15.9	14.3			
Seated or wheeling	15.5	11.5			
Getting up or rising	14.4	10.2			
Slip	0.9	0.9			


E	British Columbia LTC falls study: How do pe	ople fall?		
F	alls captured on video in long-term care (N=52	29) et al., 2017)		
	Falls while getting up 40% were associated with moving objects and loss of support	t		
-	- most often due to Number of falls		suffered:	
	incorrect shift of body weight or			
	excessive sway of the trunk	Number of falls	% of participants (N=529	
		1	46 %	
	alls while seated	2	20 %	
r		3	10 % 6 %	
-	most often due to loss of support associated with	5 or more	18 %	
	moving object (60%) or	5 of more	10 /0	
	sliding out of a chair (40%)			



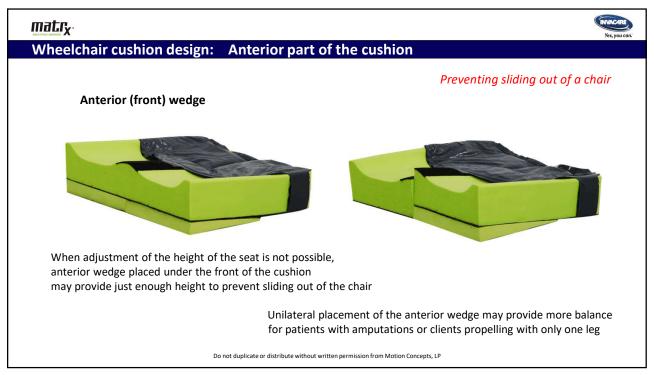
Proprioception: Why is incorrect shift of body weight so common in seniors?					
Proprioception is <u>worsened</u> with:	Proprioception is <i>improved</i> with:				
 Aging (changes in muscles and nerves) Visual changes Surgical interventions in joints Arthritis or other pathological changes Injections into the joints Neuropathy Prolonged vibration Immediately after intensive exercise Spatial neglect or 'pusher syndrome' (changes in processing visual input after CVA/strokes) Low back pain 	 Improvements in vision Regular balance training on unstable surface Short-term vibration Sensation of touching a surface/object 3-point or 4-point surface contact (e.g. back of the legs + both hands on armrests) Balanced posture of the trunk 				
 Low back pain (reliance on trunk proprioception with decline of proprioception in legs) Simultaneous demand for cognitive attention to dynamic postural control 	(Haibach, Slobounov, & Newell, 2009; Karnath & Broetz, 2003; Nishio et al., 2019; Toosizadeh, Ehsani, Miramonte, & Mohler, 2018; Vermette et al., 2019)				

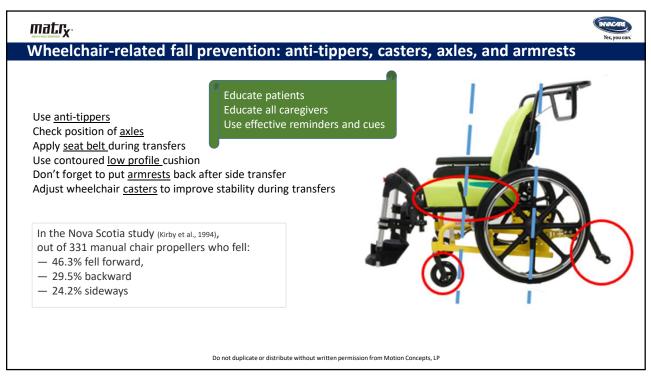
Falling while being seated or wheeled: sliding out of the wheelchair Posture – related? Wheelchair – related? Wheelchair seating - related? Image: Comparison of the wheelchair

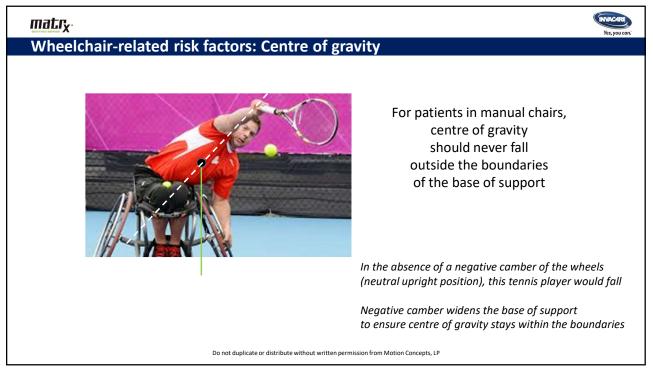
Or all the above?

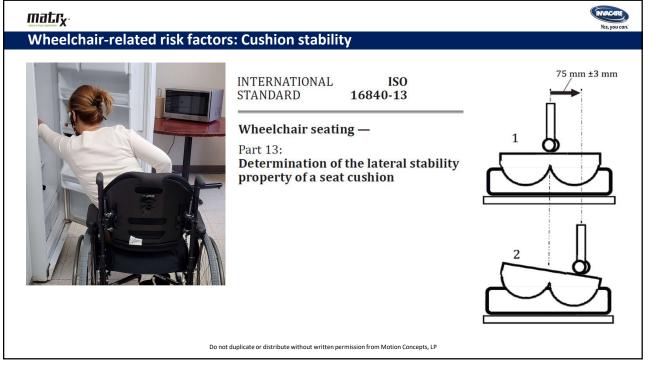
matrx

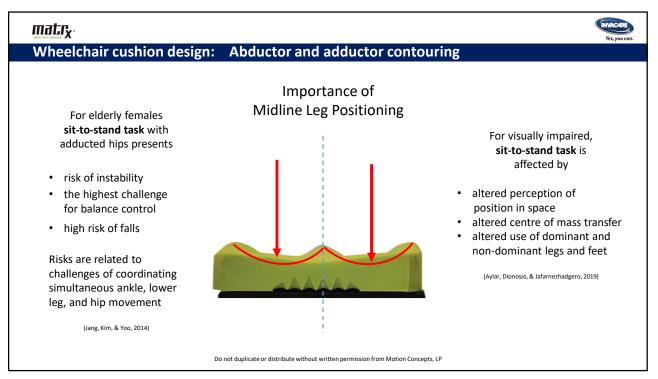
- 1. Assess patient (mat assessment)
- Assess the wheelchair
 Start from the seat, then look at the back, then the rest of the wheelchair system
- Change one thing a time and assess postural changes

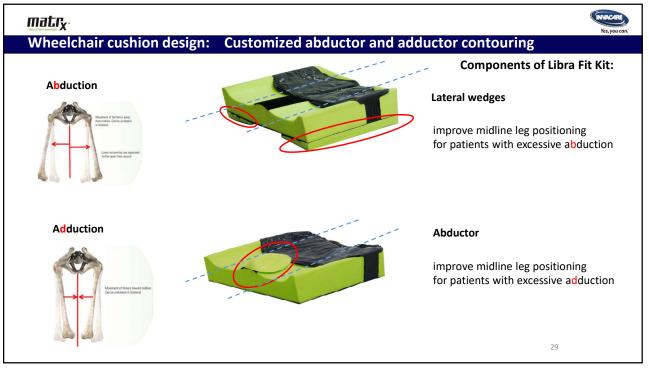


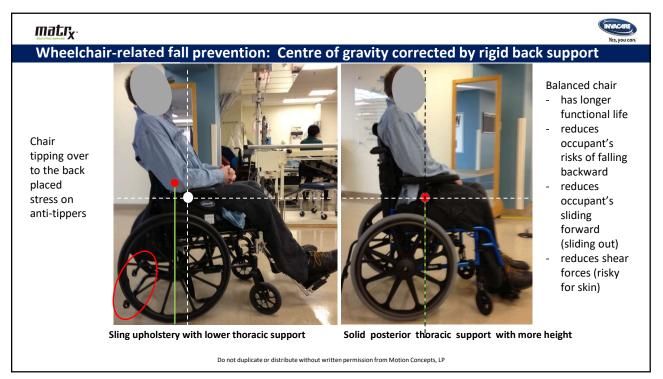


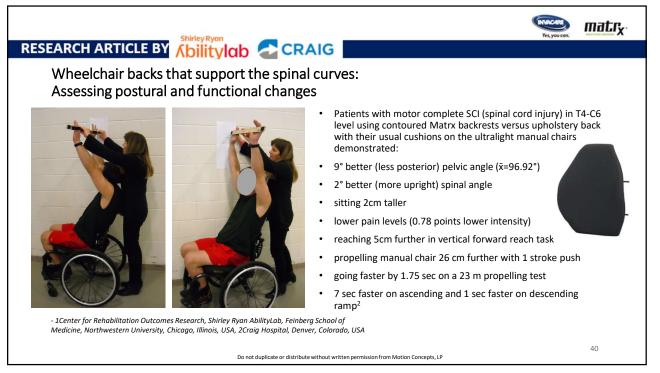


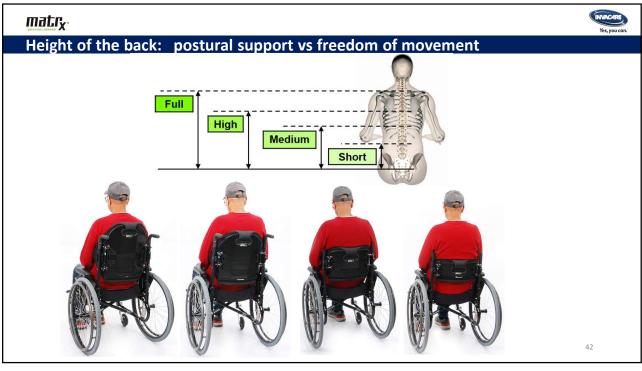


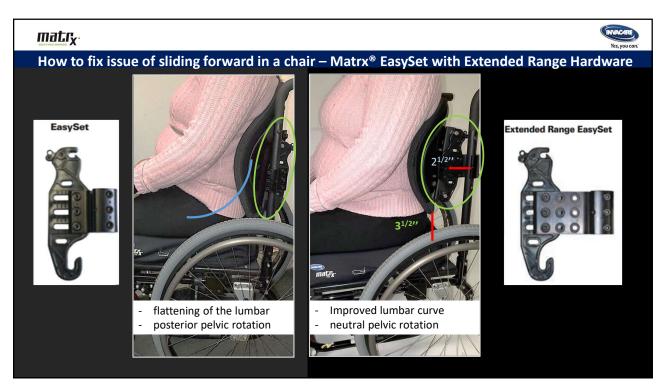


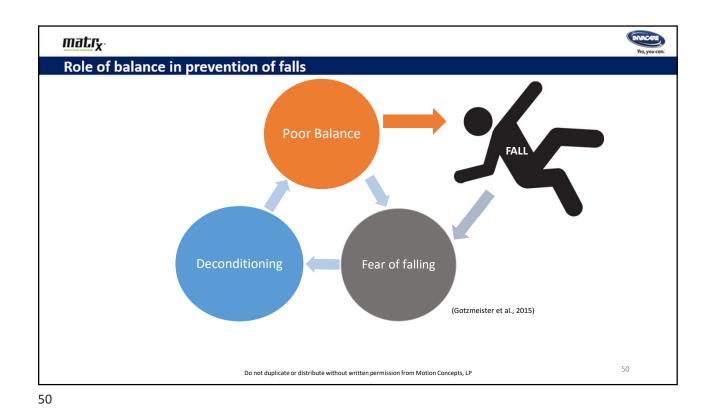


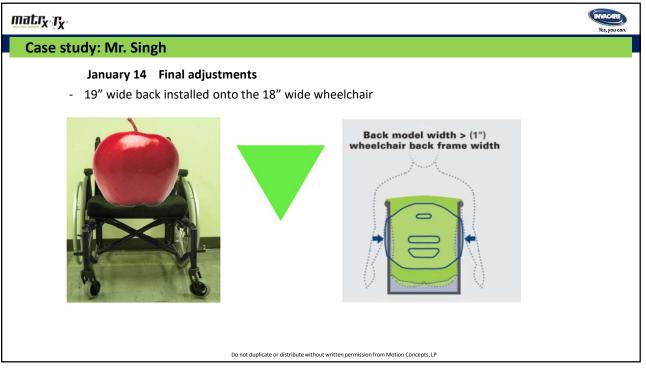




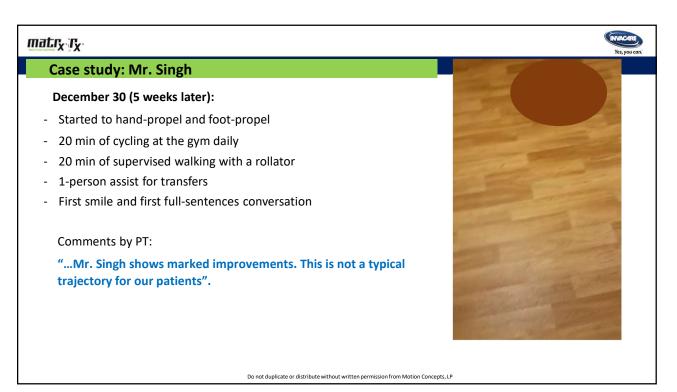


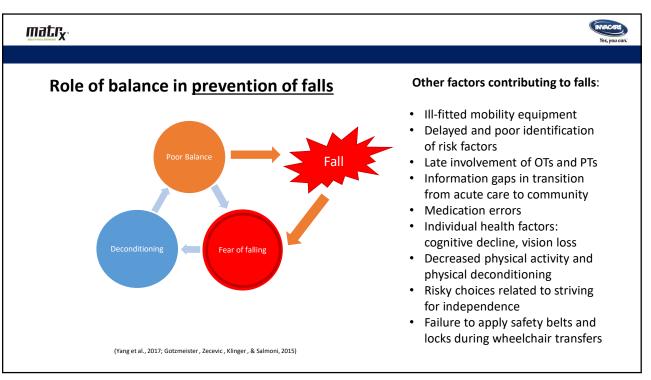


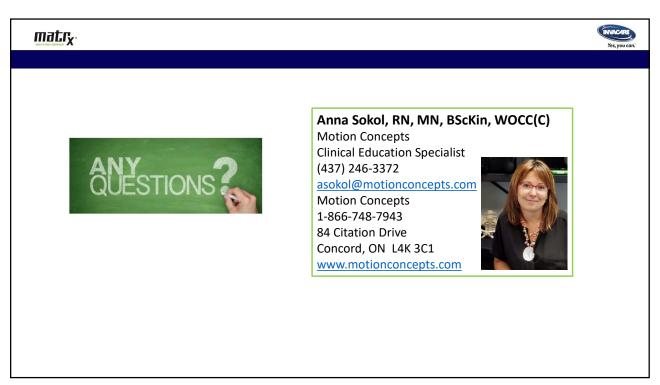



matr _x r _x	Yes, you can.
	Case study: Mr. Singh
	Addressing fear of falling
	Mr. Singh is 92 years old
	• 5 unexplained falls within 6 months
	Refusal to mobilize due to fear of falling
	Admitted to the hospital with failure to thrive
	• Treated for multiple blood clots in lower limbs, PE, and diabetes.
	 After 2 months, d/c to LTC with extreme muscle wasting, frailty, urinary incontinence
	Referred to the ADP-prescriber for a wheelchair (2 week wait)
Do not duplicate	or distribute without written permission from Motion Concepts, LP 48

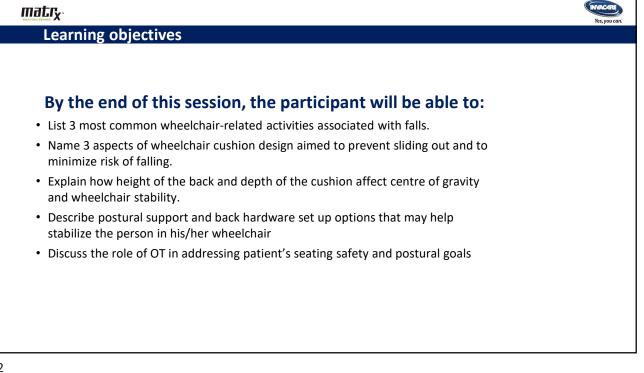
matr _x .T _x	Vers, you can:
	 Case study: Mr. Singh November 21: LTC home provided a loaner lightweight manual chair with rigid contoured back air cushion no seat cushion rigidizer Mr. Singh was sliding forward due to seat-to-floor too high After 1 week of trying, physiotherapy team requested a consult: Mr. Singh was not getting up or propelling the wheelchair wasn't communicating
Do not duplicate	e or distribute without written permission from Motion Concepts, LP 49

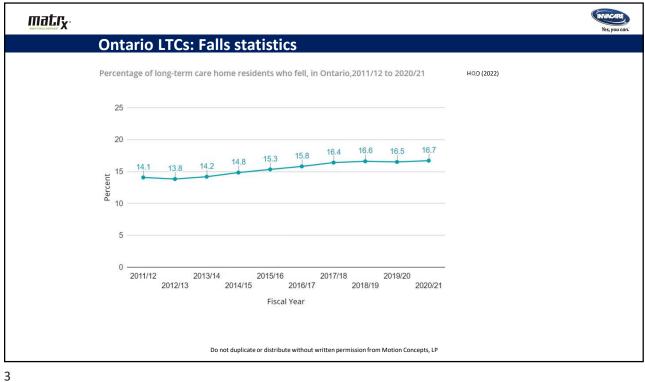

matr_x r_x


Case study: Mr. Singh

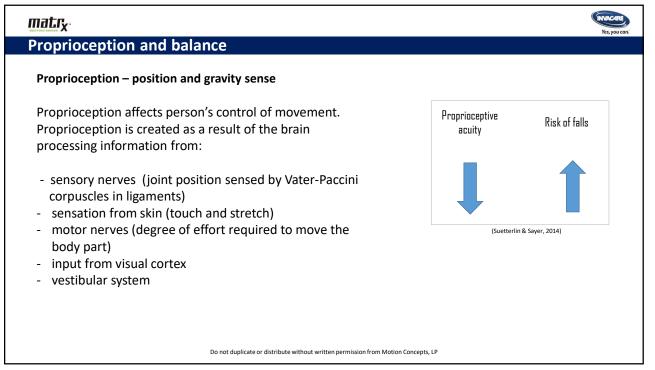

Seating products that worked:

- Proper size (18") w/c frame
- Stable skin protection & positioning cushion (1818)
- Gently contoured back 1" wider than chair frame (1918)
- Head support with adjustable mounting hardware

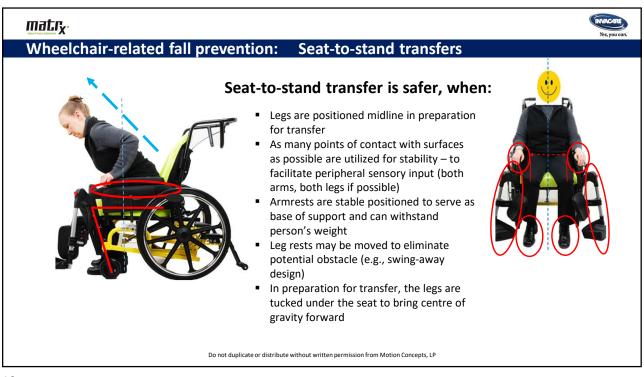


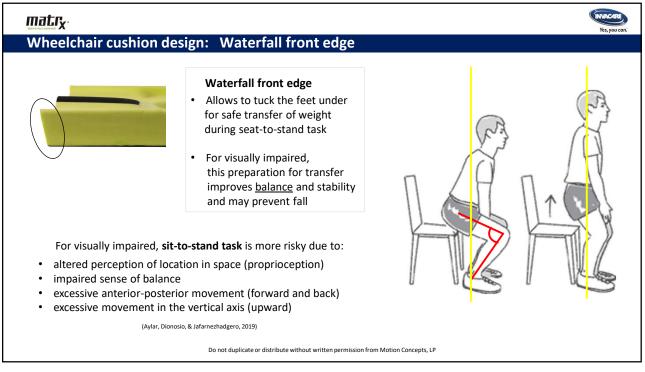


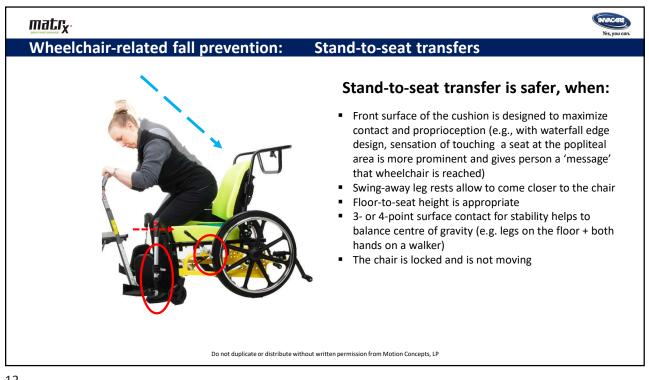
	References:
•	Aissaoui, R., Boucher, C., Bourbonnais, D., Lacoste, M., & Dansereau, J. (2001). Effect of seat cushion on dynamic stability in sitting during a reaching task in wheelchair users with paraplegia. Archives of Physical Medicine and Rehabilitation, 82, 274-281. doi: 10.1053/apmr.2001.19473
•	Aylar, M. F., Dionosio, V. C. & Jafarnezhadgero, A. A. (2019). Do the centre of mass strategies change with restricted vision during the sit-to stand task? Clinical Biomechanics, 62, 104-112.
•	Erickson, B., Hosseini, M. A., Mudhar, P. S., Soleimani, M., Aboonabi, A., Arzanpour, S., & Sparrey, C. J. (2016). The dynamics of electric powered wheelchair sideways tips and falls: experimental and computational analysis of impact forces and injury. Journal of Neuro Engineering and Rehabilitation, 13(20). doi: 10.1186/s12984-016-0128-7
•	Forslund, E.B., Jorgensen, V., Franzen, E., Opheim, A., et al. (2017). High incidence of falls and fall-related injuries in wheelchair users with spinal cord injury: a prospective study of risk indicators. Journal of Rehabilitation Medicine, 49, 144- 151. doi: 10.2340/16501977-2177
•	Gotzmeister, D., Zecevic, A. A., Klinger, L., & Salmoni, A. (2015). "People are getting lost a little bit": systemic factors that contribute to falls in community-dwelling octogenarians. Canadian Journal of Aging, 34(3), 397-410. doi: 10.1017/S071498081500015X
•	Haibach, P., Slobounov, S., & Newell, K. (2009). Egomotion and vection in young and elderly adults. Gerontology, 55(6), 637–643. https://doi.org/10.1159/000235816
•	HQO (Health Quality Ontario). (2022). Long-Term Care Home Performance: Falls. https://www.hqontario.ca/System-Performance/Long-Term-Care-Home-Performance/Falls
•	HQO (Health Quality Ontario). (2017). Insights into Quality Improvement: Home care Impressions and observations: 2016/2017 Quality Improvement Plans. Retrieved January 6, 2020, from: http://www.hqontario.ca/Portals/0/documents/qi/qip/analysis-home-care-2016-17-en.pdf
•	Jang, E. M., Kim, MH., Yoo, W. G. (2014). Comparison of the tibialis anterior and soleus muscles activities during the sit-to-stand movement with hip adduction and hip abduction in elderly females. Journal of Physical Therapy Science, 26(7), 1045-7. doi: 10.1589/jpts.26.1045
•	Karnath, HO., & Broetz, D. (2003). Understanding and treating "pusher syndrome." Physical Therapy, 83(12), 1119–1125. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=mdc&AN=14640870&site=ehost-live
•	Kirby, R. L., Ackroyd-Stolarz, S. A., Brown, M. G., Kirkland, S. A., & MacLeod, D. A. (1994). Wheelchair-related accidents caused by tips and falls among noninstitutionalized users of manually propelled wheelchairs in Nova Scotia. American Journal Of Physical Medicine & Rehabilitation, 73(5), 319-330.
·	Nishio, R., Yohei, I., Morita Y., Ito, T., Yamazaki, K., & Sakai, Y. (2019). Investigation of the functional decline in proprioceptors for low back pain using the sweep frequency. Applied Science, 9, 4988. doi:10.3390/app9234988
•	Okunribido, O. O. (2013). Patient safety during assistant propelled wheelchair transfers: the effect of the seat cushion on risk of falling. Assistive Technology, 25, 1-8. doi: 10.1080/10400435.2012.680658
•	Suetterlin, K. J. & Sayer, A. A. (2014). Proprioception: where are we now? A commentary in clinical assessment, changes across the life course, functional implications and future interventions. Age Ageing, 43(3), 313-318. doi: 10.1093/ageing/aft174
•	Toosizadeh, N., Ehsani, H., Miramonte, M., & Mohler, J. (2018). Proprioceptive impairments in high fall risk older adults: the effect of mechanical calf vibration on postural balance. Biomedical Engineering Online, 17:51.doi: 10.1186/s12938-018-0482-8
•	Varriano, B., Sulway, S., Wetmore, C., Dillon, W., Misquitta, K., Multani, N., & Rutka, J. (2021). Prevalence of cognitive and vestibular impairments in seniors experiencing falls. Conodian Journal of Neurological Sciences, 48(2), 245 – 252.
•	doi: https://doi.org/10.1017/cjn.2020.154
•	Vermette, MJ., Prince, F., Bherer, L., & Messier, J. (2019). Interaction between proprioceptive sensitivity and the attentional demand for dynamic postural control in sedentary seniors: A pilot study. Neurophysilologie Clinique; 49(6), 423- 426. doi: 10.1016/j.neudi.2019.10.047
•	Yang, K. S., van Schooten, J. Sims-Gould, H. A. McKay, F. Feldman, & S. N. Robinovitch. (2017). Sex differences in the circumstances leading to falls: Evidence from real-life falls captured on video in long-term care. Journal of the American Medical Directors Association, 1-6. doi: 10.1016/j.jamda.2017.08.011
·	Yap L. K., Au, S. Y., Ang., Y. H., & Ee C. H. (2003). Nursing home falls: a local perspective. Annals of the Academy of Medicine, Singapore, 32(6), 795 – 800.



Falls captured on video in long-term care (Yang et al., 2017)		
Activity at time of fall	Number of falls (%	
	Men (N=231)	Women (N=298)
Walking	29.2	40.3
Standing	25.0	23.8
Sitting down or lowering	15.9	14.3
Seated or wheeling	15.5	11.5
Getting up or rising	14.4	10.2
Slip	0.9	0.9


British Columbia LTC falls study: How do pe	ople fall?	
Falls captured on video in long-term care (N=52 (Yang	29) .et al., 2017)	
 Falls while getting up 40% were associated with moving objects and loss of suppor most often due to 	rt Number of falls suf	fered:
incorrect shift of body weight or		
excessive sway of the trunk	Number of falls	% of participants (N=529
	1	46 %
	2	20 %
Falls while seated	3	10 %
 most often due to loss of support associated with 	4	6%
moving object (60%) or	5 or more	18 %
sliding out of a chair (40%)		




oprioception: Why is incorrect shift o	f body weight so common in seniors?
Proprioception is <u>worsened</u> with:	Proprioception is <i>improved</i> with:
 Aging (changes in muscles and nerves) Visual changes Surgical interventions in joints Arthritis or other pathological changes Injections into the joints Neuropathy Prolonged vibration Immediately after intensive exercise Spatial neglect or 'pusher syndrome' (changes in processing visual input after CVA/strokes) 	 Improvements in vision Regular balance training on unstable surface Short-term vibration Sensation of touching a surface/object 3-point or 4-point surface contact (e.g. back of the legs + both hands on armrests) Balanced posture of the trunk
 Low back pain (reliance on trunk proprioception with decline of proprioception in legs) Simultaneous demand for cognitive attention to dynamic postural control 	(Haibach, Slobounov, & Newell, 2009; Karnath & Broetz, 2003; Nishio et al., 2019; Toosizadeh, Ehsani, Miramonte, & Mohler, 2018; Vermette et al., 2019)

Falling while being seated or wheeled: sliding out of the wheelchair Posture – related? Wheelchair – related?

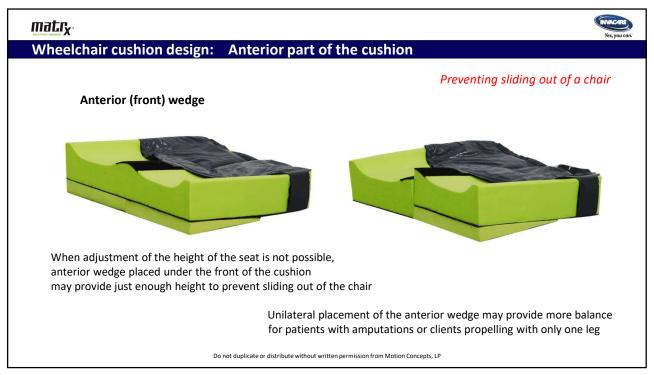
Or all the above?

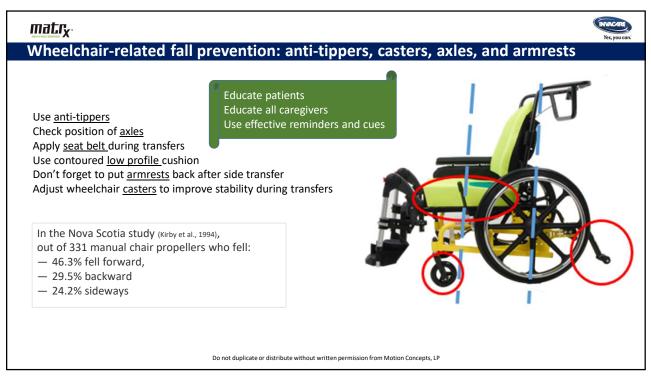
matrx

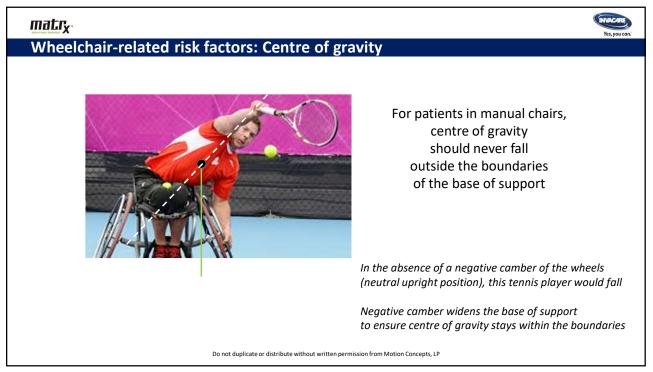
- 1. Assess patient (mat assessment)
- Assess the wheelchair
 Start from the seat, then look at the back, then the rest of the wheelchair system

Wheelchair seating - related?

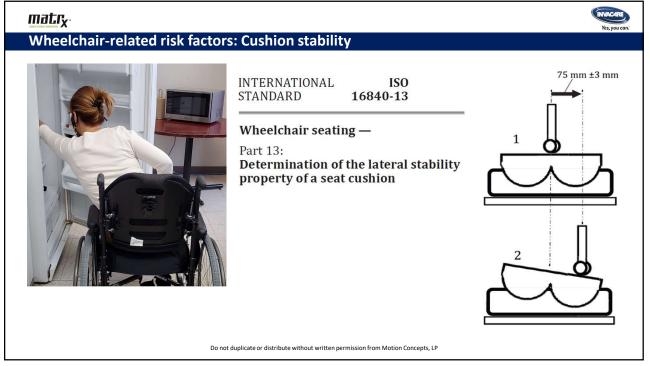
- Change one thing a time and assess postural changes

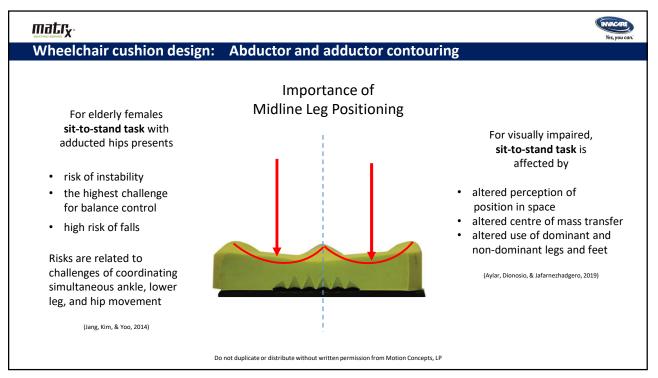


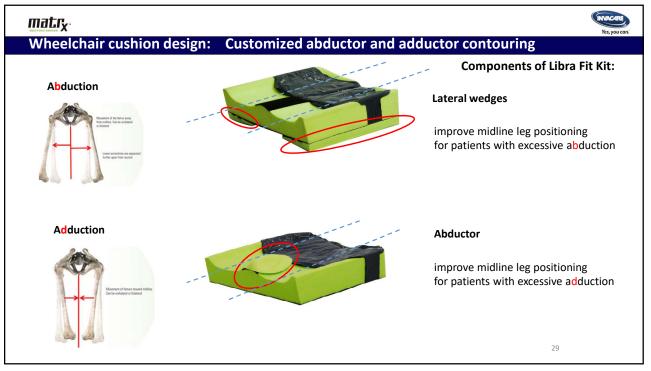


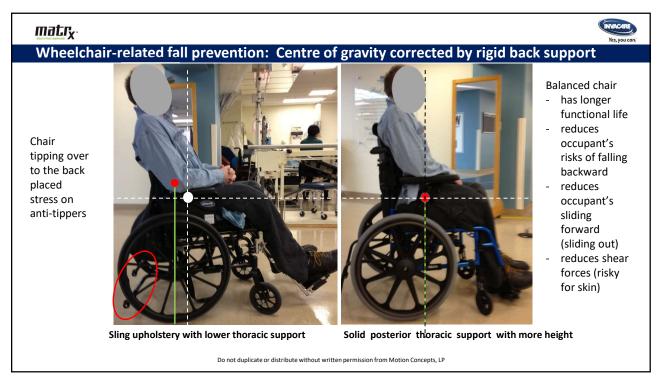


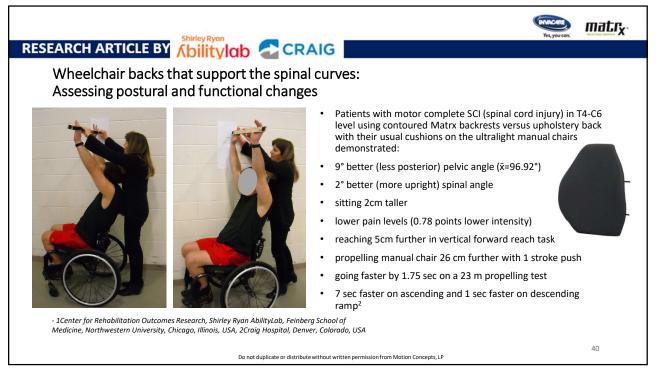


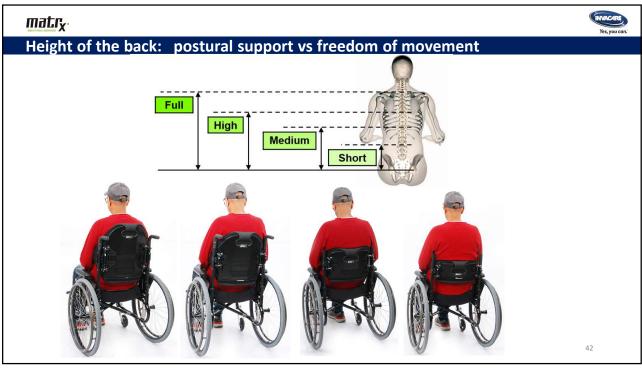


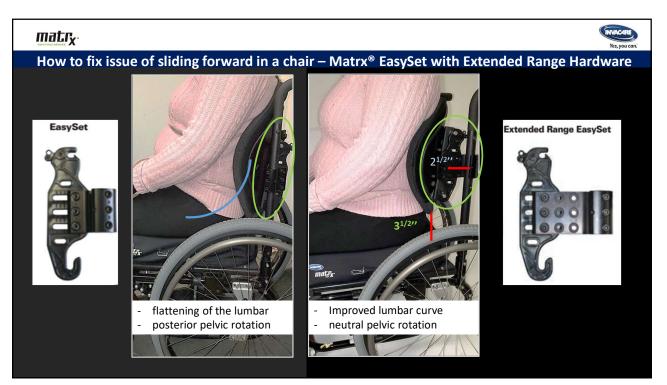


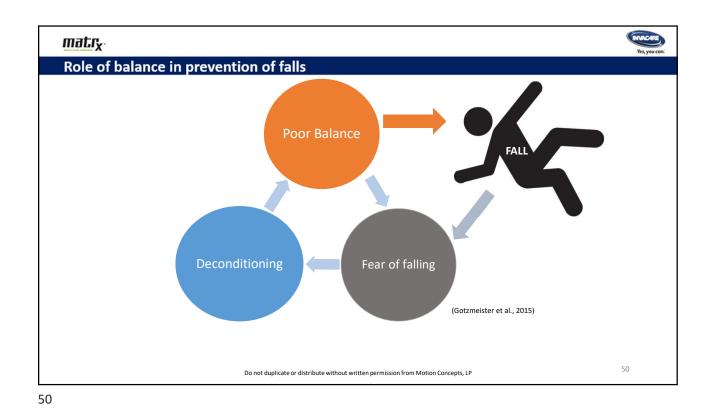


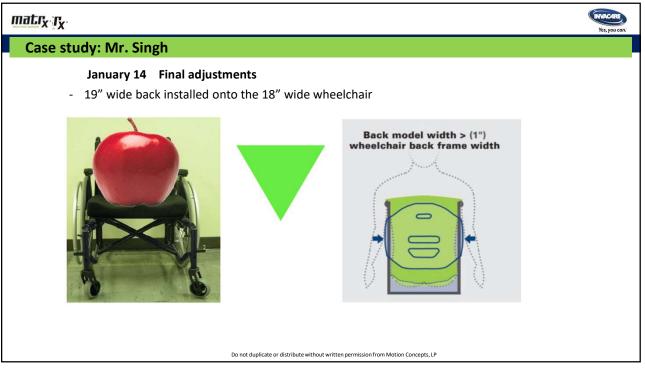




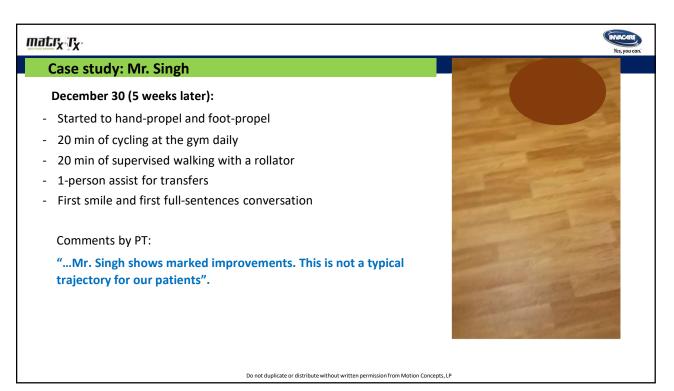


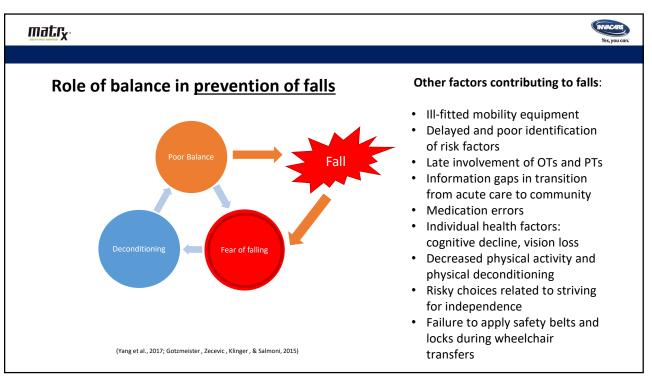


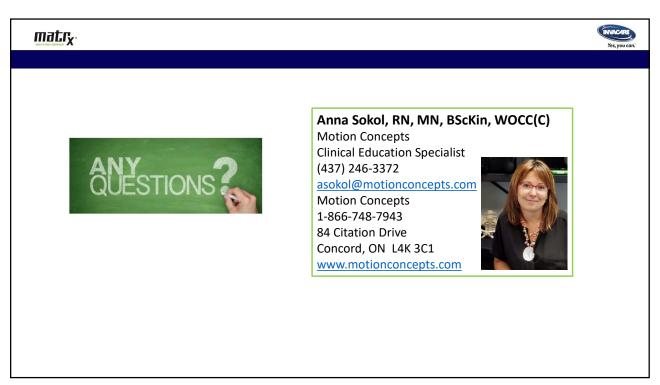



Case study: Mr. Singh Addressing fear of falling • Mr. Singh is 92 years old
Mr. Singh is 92 years old
 5 unexplained falls within 6 months
Refusal to mobilize due to fear of falling
Admitted to the hospital with failure to thrive
 Treated for multiple blood clots in lower limbs, PE, and diabetes.
 After 2 months, d/c to LTC with extreme muscle wasting, frailty, urinary incontinence
Referred to the ADP-prescriber for a wheelchair (2 week wait)
distribute without written permission from Motion Concepts, LP 48
1

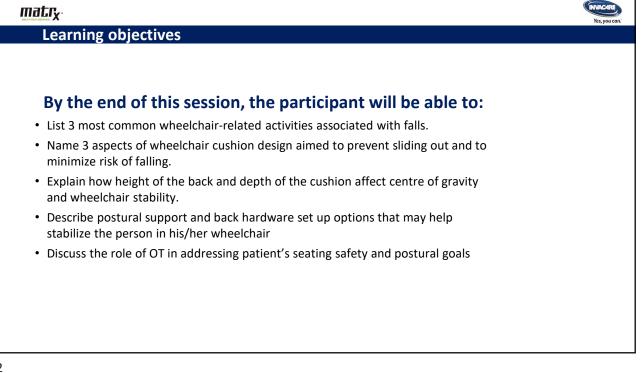
matr _x .T _x .	Yes, you can:
	Case study: Mr. Singh November 21: LTC home provided a loaner lightweight manual chair with rigid contoured back air cushion no seat cushion rigidizer Mr. Singh was sliding forward due to seat-to-floor too high After 1 week of trying, physiotherapy team requested a consult: Mr. Singh was not getting up or propelling the wheelchair Wasn't communicating
Do not duplicate	e or distribute without written permission from Motion Concepts, LP 4-2

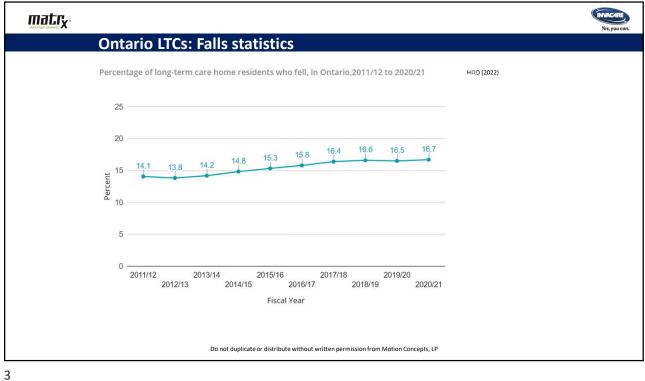

matr_x r_x


Case study: Mr. Singh

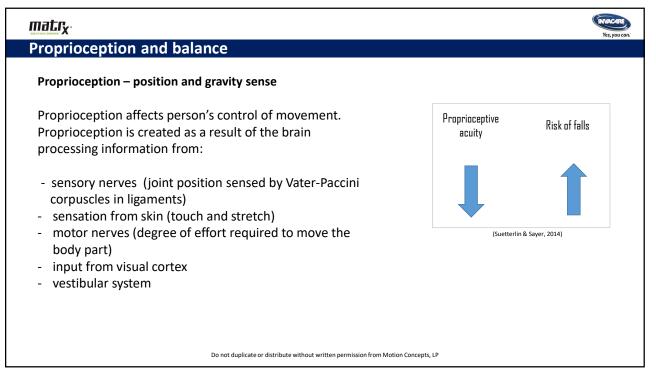

Seating products that worked:

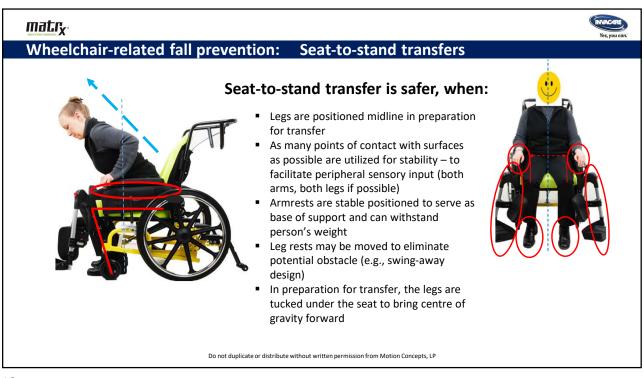
- Proper size (18") w/c frame
- Stable skin protection & positioning cushion (1818)
- Gently contoured back 1" wider than chair frame (1918)
- Head support with adjustable mounting hardware

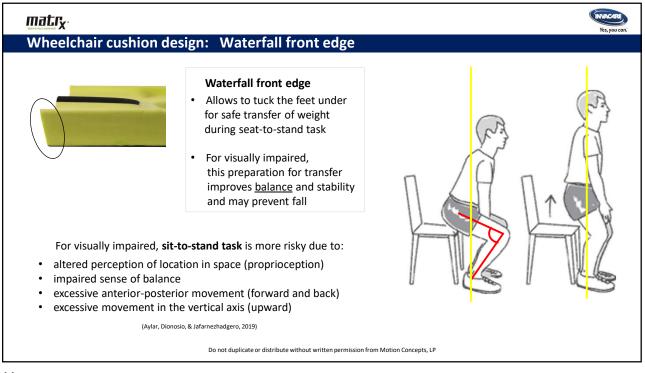


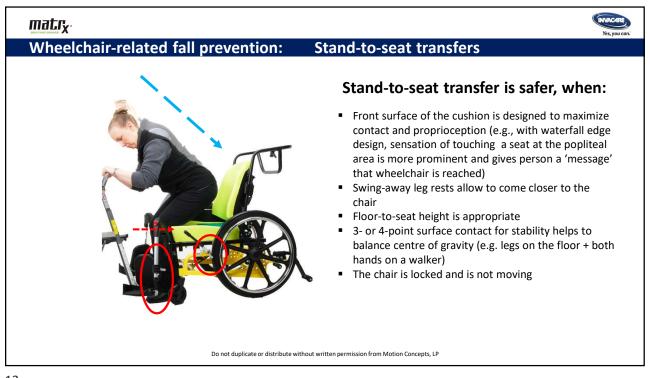


	References:
•	Alssaoui, R., Boucher, C., Bourbonnais, D., Lacoste, M., & Dansereau, J. (2001). Effect of seat cushion on dynamic stability in sitting during a reaching task in wheelchair users with paraplegia. Archives of Physical Medicine ond Rehabilitation, 82, 274-281. doi: 10.1053/apmr.2001.19473
•	Aylar, M. F., Dionosio, V. C. & Jafarnezhadgero, A. A. (2019). Do the centre of mass strategies change with restricted vision during the sit-to stand task? Clinical Biomechanics, 62, 104-112.
•	Erickson, B., Hosseini, M. A., Mudhar, P. S., Soleimani, M., Aboonabi, A., Arzanpour, S., & Sparrey, C. J. (2016). The dynamics of electric powered wheelchair sideways tips and falls: experimental and computational analysis of impact forces and injury. Journal of Neuro Engineering and Rehabilitation, 13(20). doi: 10.1186/s12984-016-0128-7
•	Forslund, E.B., Jorgensen, V., Franzen, E., Opheim, A., et al. (2017). High incidence of falls and fall-related injuries in wheelchair users with spinal cord injury: a prospective study of risk indicators. Journal of Rehabilitation Medicine, 49, 144- 151. doi: 10.2340/16501977-2177
·	Gotzmeister, D., Zecevic, A. A., Klinger, L., & Salmoni, A. (2015). "People are getting lost a little bit": systemic factors that contribute to falls in community-dwelling octogenarians. Canadian Journal of Aging, 34(3), 397-410. doi: 10.1017/S071498081500015X
•	Haibach, P., Slobounov, S., & Newell, K. (2009). Egomotion and vection in young and elderly adults. Gerontology, 55(6), 637–643. https://doi.org/10.1159/000235816
•	HQO (Health Quality Ontario). (2022). Long-Term Care Home Performance: Falls. https://www.hqontario.ca/System-Performance/Long-Term-Care-Home-Performance/Falls
•	HQO (Health Quality Ontario). (2017). Insights into Quality Improvement: Home care Impressions and observations: 2016/2017 Quality Improvement Plans. Retrieved January 6, 2020, from: http://www.hqontario.ca/Portals/0/documents/qi/qip/analysis-home-care-2016-17-en.pdf
•	Jang, E. M., Kim, MH., Yoo, W. G. (2014). Comparison of the tibialis anterior and soleus muscles activities during the sit-to-stand movement with hip adduction and hip abduction in elderly females. Journal of Physical Therapy Science, 26(7), 1045-7. doi: 10.1589/jpts.26.1045
•	Karnath, HO., & Broetz, D. (2003). Understanding and treating "pusher syndrome." Physical Therapy, 83(12), 1119–1125. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=mdc&AN=14640870&site=ehost-live
•	Kirby, R. L., Ackroyd-Stolarz, S. A., Brown, M. G., Kirkland, S. A., & MacLeod, D. A. (1994). Wheelchair-related accidents caused by tips and falls among noninstitutionalized users of manually propelled wheelchairs in Nova Scotia. American Journal Of Physical Medicine & Rehabilitation, 73(5), 819-330.
•	Nishio, R., Yohei, I., Morita Y., Ito, T., Yamazaki, K., & Sakai, Y. (2019). Investigation of the functional decline in proprioceptors for low back pain using the sweep frequency. Applied Science, 9, 4988. doi:10.3390/app9234988
·	Okunribido, O. O. (2013). Patient safety during assistant propelled wheelchair transfers: the effect of the seat cushion on risk of falling. Assistive Technology, 25, 1-8. doi: 10.1080/10400435.2012.680658
•	Suetterlin, K. J. & Sayer, A. A. (2014). Proprioception: where are we now? A commentary in clinical assessment, changes across the life course, functional implications and future interventions. Age Ageing, 43(3), 313-318. doi: 10.1093/ageing/aft174
•	Toosizadeh, N., Ehsani, H., Miramonte, M., & Mohler, J. (2018). Proprioceptive impairments in high fall risk older adults: the effect of mechanical calf vibration on postural balance. Biomedical Engineering Online, 17:51.doi: 10.1186/s12938-018-0482-8
•	Varriano, B., Sulway, S., Wetmore, C., Dillon, W., Misquitta, K., Multani, N., & Rutka, J. (2021). Prevalence of cognitive and vestibular impairments in seniors experiencing falls. Canadian Journal of Neurological Sciences, 48(2), 245 – 252.
•	doi: https://doi.org/10.1017/cjn.2020.154
•	Vermette, MJ., Prince, F., Bherer, L., & Messier, J. (2019). Interaction between proprioceptive sensitivity and the attentional demand for dynamic postural control in sedentary seniors: A pilot study. Neurophysilologie Clinique, 49(6), 423-426. doi: 10.1016/j.neucl.2019.10.047
•	Yang, K. S., van Schooten, J. Sims-Gould, H. A. McKay, F. Feldman, & S. N. Robinovitch. (2017). Sex differences in the circumstances leading to falls: Evidence from real-life falls captured on video in long-term care. Journal of the American Medical Directors Association, 1-6. doi: 10.1016/j.jamda.2017.08.011
•	Yap L. K., Au, S. Y., Ang., Y. H., & Ee C. H. (2003). Nursing home falls: a local perspective. Annals of the Academy of Medicine, Singapore, 32(6), 795 – 800.




Falls captured on video in long-term care (Yang et al., 2017)		
Activity at time of fall	Number of falls (%	
	Men (N=231)	Women (N=298)
Walking	29.2	40.3
Standing	25.0	23.8
Sitting down or lowering	15.9	14.3
Seated or wheeling	15.5	11.5
Getting up or rising	14.4	10.2
Slip	0.9	0.9


E	British Columbia LTC falls study: How do pe	ople fall?	
F	Falls captured on video in long-term care (N=529) (Yang et al., 2017)		
	Falls while getting up 40% were associated with moving objects and loss of support	t	
-	most often due to	Number of falls suf	fered:
	incorrect shift of body weight or		
	excessive sway of the trunk	Number of falls	% of participants (N=529
		1	46 %
	alls while seated	2	20 %
r		3	10 % 6 %
-	most often due to loss of support associated with	5 or more	18 %
	moving object (60%) or	5 of more	10 /0
	sliding out of a chair (40%)		



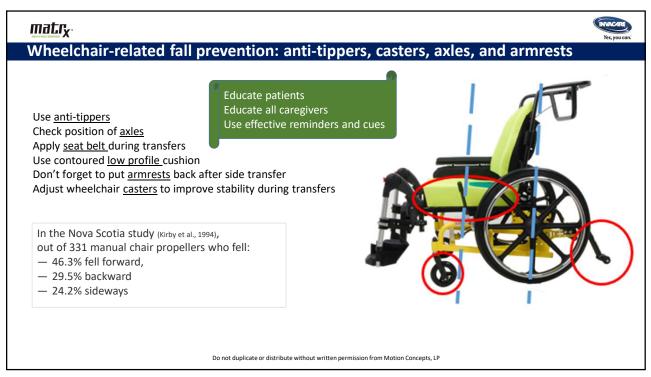
oprioception: Why is incorrect shift o	of body weight so common in seniors?
Proprioception is <u>worsened</u> with:	Proprioception is <i>improved</i> with:
 Aging (changes in muscles and nerves) Visual changes Surgical interventions in joints Arthritis or other pathological changes Injections into the joints Neuropathy Prolonged vibration Immediately after intensive exercise Spatial neglect or 'pusher syndrome' (changes in processing visual input after CVA/strokes) Low back pain 	 Improvements in vision Regular balance training on unstable surface Short-term vibration Sensation of touching a surface/object 3-point or 4-point surface contact (e.g. back of the legs + both hands on armrests) Balanced posture of the trunk
 Low back pain (reliance on trunk proprioception with decline of proprioception in legs) Simultaneous demand for cognitive attention to dynamic postural control 	(Haibach, Slobounov, & Newell, 2009; Karnath & Broetz, 2003; Nishio et al., 2019; Toosizadeh, Ehsani, Miramonte, & Mohler, 2018; Vermette et al., 2019)

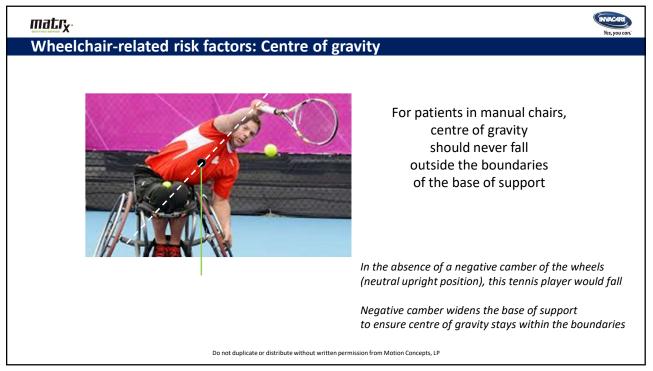
Falling while being seated or wheeled: sliding out of the wheelchair Posture – related? Wheelchair – related? Wheelchair seating - related? Image: Comparison of the seating - related?

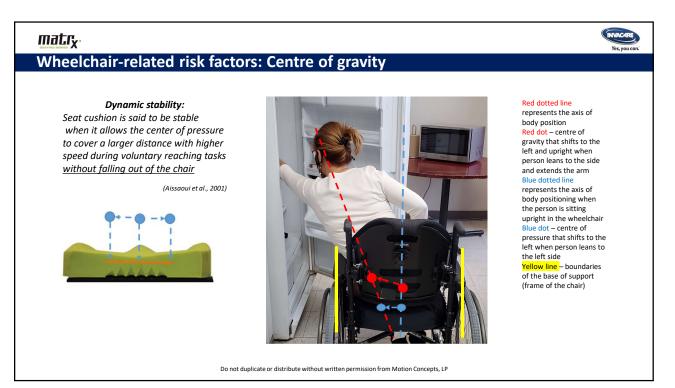
Or all the above?

matrx

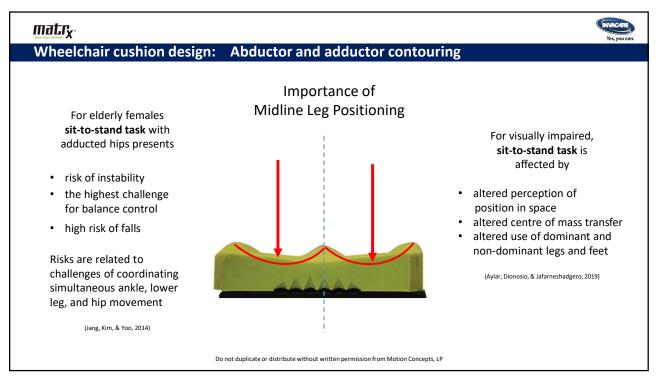
- 1. Assess patient (mat assessment)
- Assess the wheelchair
 Start from the seat, then look at the back, then the
- rest of the wheelchair system
 Change one thing a time and assess postural changes

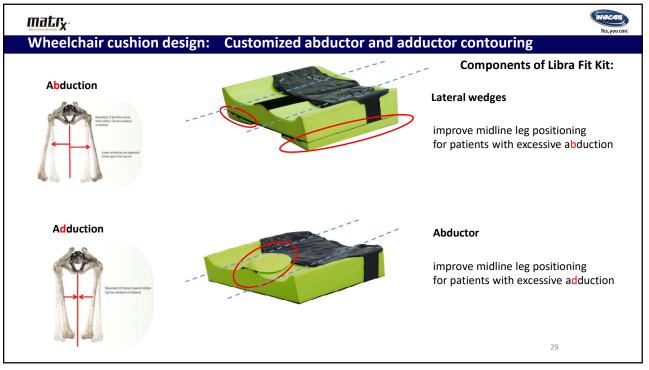


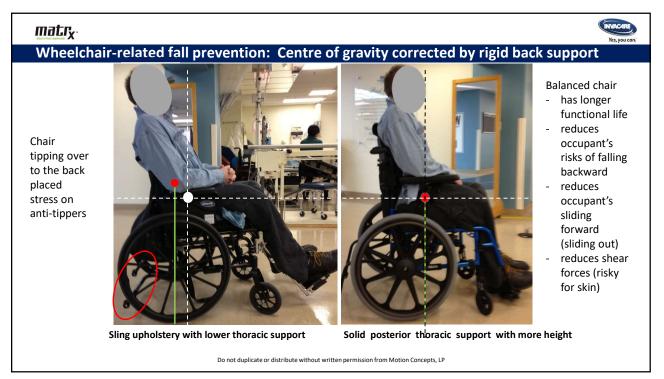


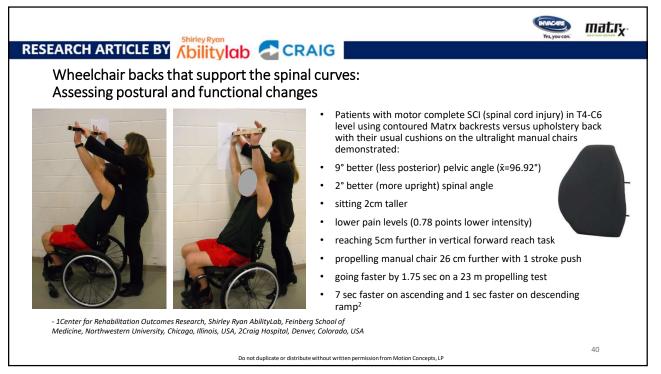


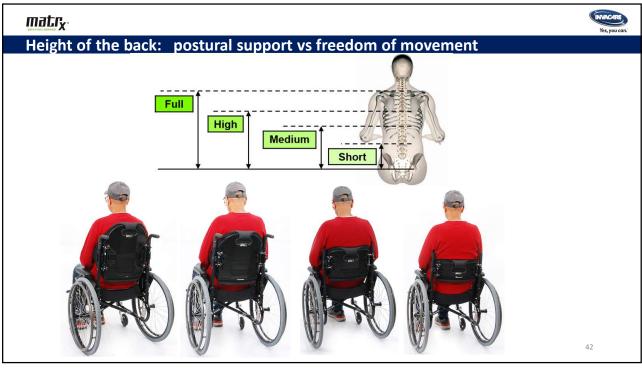


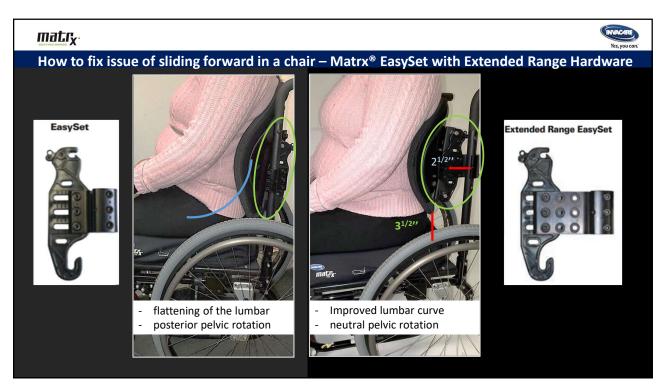


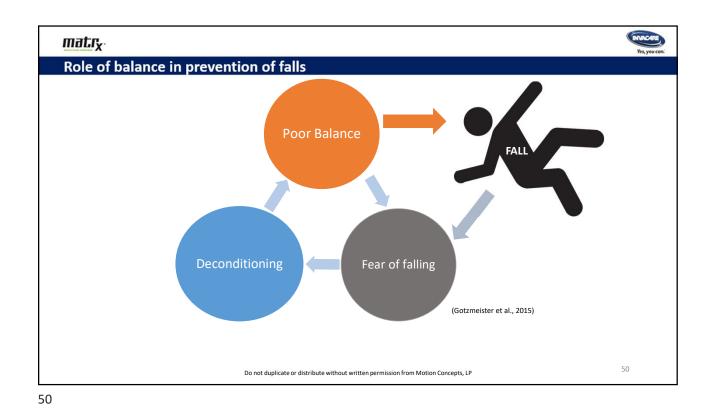


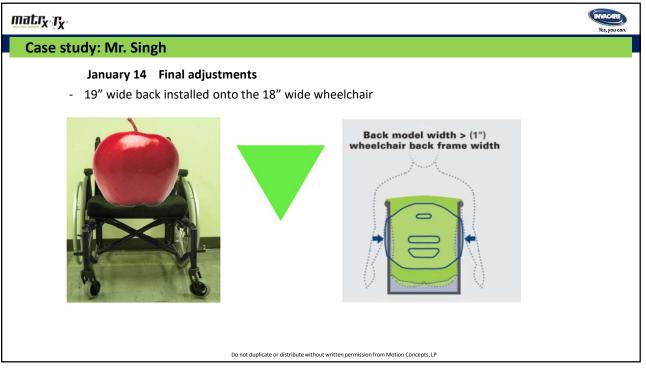




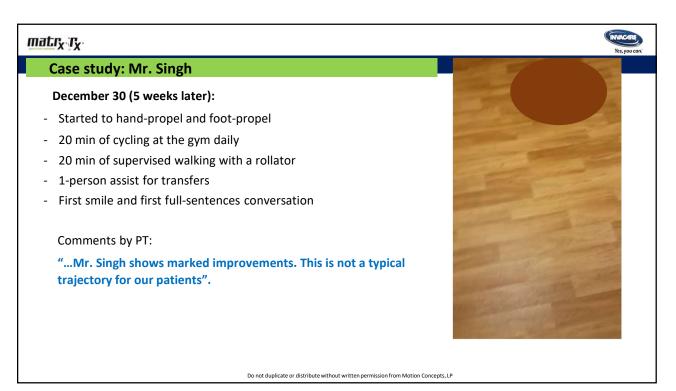


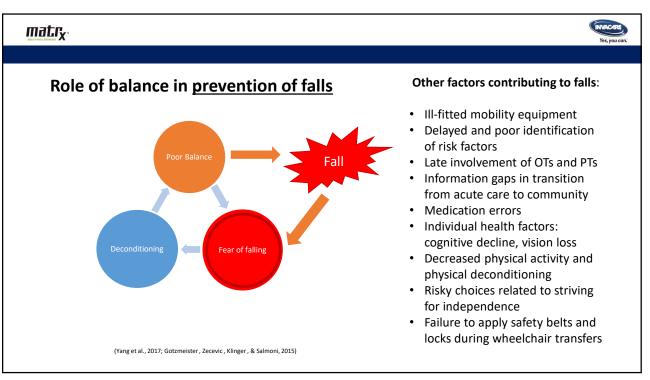


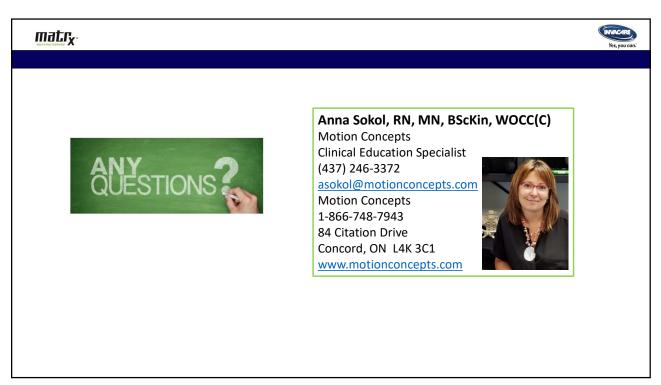



	Yes, you co
	Case study: Mr. Singh
	Addressing fear of falling
	Mr. Singh is 92 years old
	5 unexplained falls within 6 months
	Refusal to mobilize due to fear of falling
	Admitted to the hospital with failure to thrive
	Treated for multiple blood clots in lower limbs, PE, and diabetes.
	After 2 months, d/c to LTC with extreme muscle wasting, frailty, urinary incontinence
	Referred to the ADP-prescriber for a wheelchair (2 week wait)
Do not du	plicate or distribute without written permission from Motion Concepts, LP 48

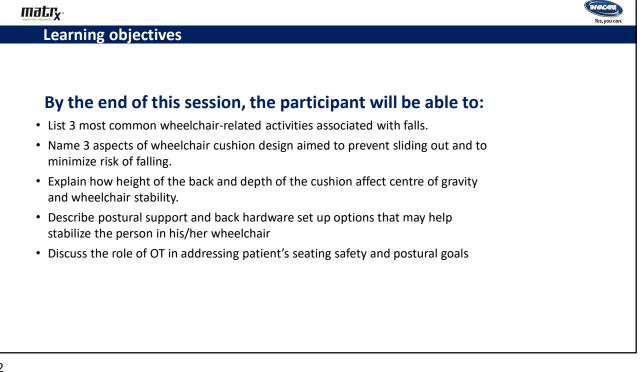
matr _x . I _X .	Yes, you can:
	Case study: Mr. Singh November 21: LTC home provided a loaner lightweight manual chair with rigid contoured back air cushion no seat cushion rigidizer Mr. Singh was sliding forward due to seat-to-floor too high
	After 1 week of trying, physiotherapy team requested a consult: - Mr. Singh was not getting up or propelling the wheelchair - wasn't communicating
Do not duplica	te or distribute without written permission from Motion Concepts, LP 49

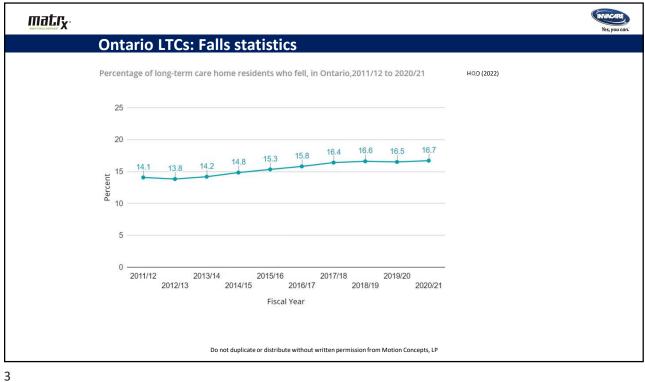

matr_x r_x


Case study: Mr. Singh

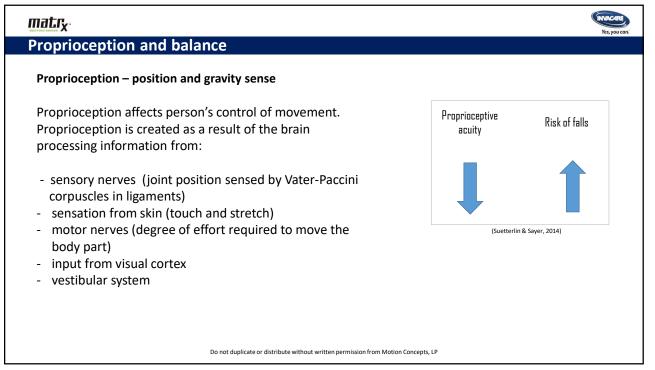

Seating products that worked:

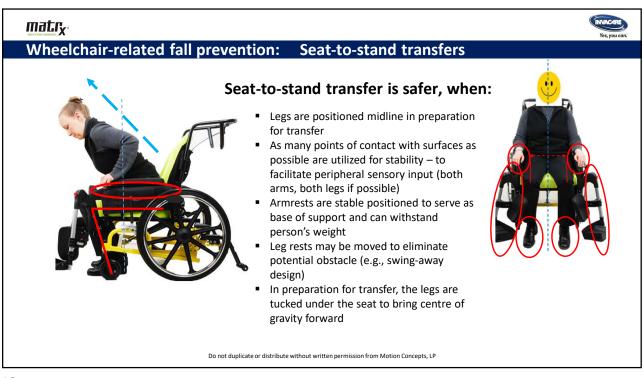
- Proper size (18") w/c frame
- Stable skin protection & positioning cushion (1818)
- Gently contoured back 1" wider than chair frame (1918)
- Head support with adjustable mounting hardware

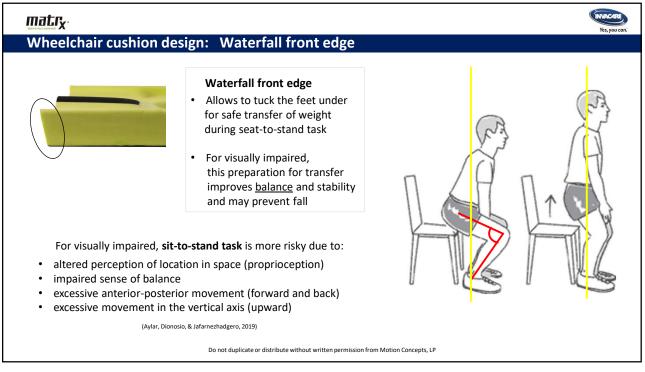


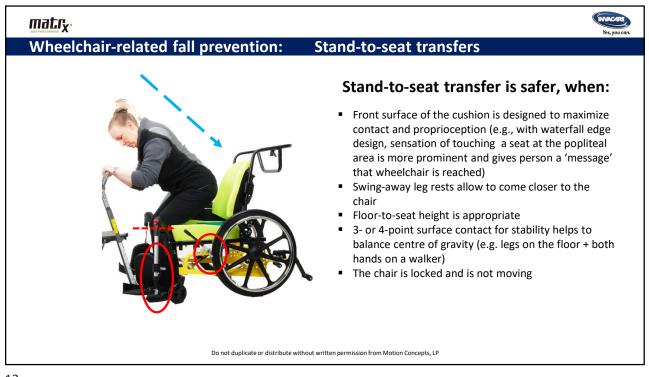


matrx	Yes, you can:
References:	
 Aissaoui, R., Boucher, C., Bourbonnais, D., Lacoste, M., & Dansereau, J. (2001). Effect of seat cushion on dynamic stability in sitting during a reaching task in wheelchair users with paraplegia. Archives of Physical M 82, 274-281. doi: 10.1053/apmr.2001.19473 	ledicine and Rehabilitation,
• Aylar, M. F., Dionosio, V. C. & Jafarnezhadgero, A. A. (2019). Do the centre of mass strategies change with restricted vision during the sit-to stand task? Clinical Biomechanics, 62, 104-112.	
 Erickson, B., Hosseini, M. A., Mudhar, P. S., Soleimani, M., Aboonabi, A., Arzanpour, S., & Sparrey, C. J. (2016). The dynamics of electric powered wheelchair sideways tips and falls: experimental and computationa and injury. Journal of Neuro Engineering and Rehabilitation, 13(20). doi: 10.1186/s12984-016-0128-7 	al analysis of impact forces
 Forslund, E.B., Jorgensen, V., Franzen, E., Opheim, A., et al. (2017). High incidence of falls and fall-related injuries in wheelchair users with spinal cord injury: a prospective study of risk indicators. Journal of Rehabi 151. doi: 10.2340/16501977-2177 	litation Medicine, 49, 144-
 Gotzmeister, D., Zecevic, A. A., Klinger, L., & Salmoni, A. (2015). "People are getting lost a little bit": systemic factors that contribute to falls in community-dwelling octogenarians. Canadian Journal of Aging, 34(3), 10.1017/S071498081500015X 	397-410. doi:
 Haibach, P., Slobounov, S., & Newell, K. (2009). Egomotion and vection in young and elderly adults. Gerontology, 55(6), 637–643. https://doi.org/10.1159/000235816 	
HQO (Health Quality Ontario). (2022). Long-Term Care Home Performance: Falls. https://www.hqontario.ca/System-Performance/Long-Term-Care-Home-Performance/Falls	
 HQO (Health Quality Ontario). (2017). Insights into Quality Improvement: Home care Impressions and observations: 2016/2017 Quality Improvement Plans. Retrieved January 6, 2020, from: http://www.hqontario.ca/Portals/0/documents/qi/qip/analysis-home-care-2016-17-en.pdf 	
 Jang, E. M., Kim, MH., Yoo, W. G. (2014). Comparison of the tibialis anterior and soleus muscles activities during the sit-to-stand movement with hip adduction and hip abduction in elderly females. Journal of Phy 1045-7. doi: 10.1589/jpts.26.1045 	sical Therapy Science, 26(7),
• Karnath, HO., & Broetz, D. (2003). Understanding and treating "pusher syndrome." Physical Therapy, 83(12), 1119–1125. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=mdc&AN=1464	0870&site=ehost-live
 Kirby, R. L., Ackroyd-Stolarz, S. A., Brown, M. G., Kirkland, S. A., & MacLeod, D. A. (1994). Wheelchair-related accidents caused by tips and falls among noninstitutionalized users of manually propelled wheelchairs i Journal Of Physical Medicine & Rehabilitation, 73(5), 319-330. 	in Nova Scotia. American
• Nishio, R., Yohei, I., Morita Y., Ito, T., Yamazaki, K., & Sakai, Y. (2019). Investigation of the functional decline in proprioceptors for low back pain using the sweep frequency. Applied Science, 9, 4988. doi:10.3390/ap	p9234988
Okunribido, O. O. (2013). Patient safety during assistant propelled wheelchair transfers: the effect of the seat cushion on risk of falling. Assistive Technology, 25, 1-8. doi: 10.1080/10400435.2012.680658	
 Suetterlin, K. J. & Sayer, A. A. (2014). Proprioception: where are we now? A commentary in clinical assessment, changes across the life course, functional implications and future interventions. Age Ageing, 43(3), 3 10.1093/ageing/aft174 	13-318. doi:
 Toosizadeh, N., Ehsani, H., Miramonte, M., & Mohler, J. (2018). Proprioceptive impairments in high fall risk older adults: the effect of mechanical calf vibration on postural balance. Biomedical Engineering Online, 3 018-0482-8 	17:51.doi: 10.1186/s12938-
• Varriano, B., Sulway, S., Wetmore, C., Dillon, W., Misquitta, K., Multani, N., & Rutka, J. (2021). Prevalence of cognitive and vestibular impairments in seniors experiencing fails. Canadian Journal of Neurological S	ciences , 48(2), 245 – 252.
doi: https://doi.org/10.1017/cjn.2020.154	
 Vermette, MJ., Prince, F., Bherer, L., & Messier, J. (2019). Interaction between proprioceptive sensitivity and the attentional demand for dynamic postural control in sedentary seniors: A pilot study. Neurophysilo 426. doi: 10.1016/j.neucl.2019.10.047 	ologie Clinique, 49(6), 423-
 Yang, K. S., van Schooten, J. Sims-Gould, H. A. McKay, F. Feldman, & S. N. Robinovitch. (2017). Sex differences in the circumstances leading to falls: Evidence from real-life falls captured on video in long-term care Medical Directors Association, 1-6. doi: 10.1016/j.jamda.2017.08.011 	Journal of the American
 Yap L. K., Au, S. Y., Ang., Y. H., & Ee C. H. (2003). Nursing home falls: a local perspective. Annals of the Academy of Medicine, Singapore, 32(6), 795 – 800. 	




Activity at time of fallNumber of falls (%)Men (N=231)Women (N=231)Walking29.240.3
Walking 29.2 40.3
Standing 25.0 23.8
Sitting down or lowering 15.9 14.3
Seated or wheeling 15.5 11.5
Getting up or rising 14.4 10.2
Slip 0.9 0.9


British Columbia LTC falls study: How do pe	ople fall?		
Falls captured on video in long-term care (N=529) (Yang et al., 2017)			
 Falls while getting up 40% were associated with moving objects and loss of suppor most often due to 	rt Number of falls suf	fered:	
incorrect shift of body weight or			
excessive sway of the trunk	Number of falls	% of participants (N=529	
	1	46 %	
	2	20 %	
Falls while seated	3	10 %	
 most often due to loss of support associated with 	4	6%	
moving object (60%) or	5 or more	18 %	
sliding out of a chair (40%)			



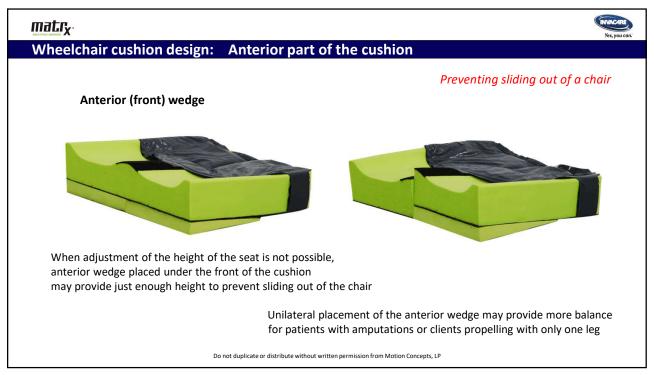
oprioception: Why is incorrect shift o	r body weight so common in seniors?
Proprioception is <u>worsened</u> with:	Proprioception is <i>improved</i> with:
 Aging (changes in muscles and nerves) Visual changes Surgical interventions in joints Arthritis or other pathological changes Injections into the joints Neuropathy Prolonged vibration Immediately after intensive exercise Spatial neglect or 'pusher syndrome' (changes in processing visual input after CVA/strokes) Iow back pain 	 Improvements in vision Regular balance training on unstable surface Short-term vibration Sensation of touching a surface/object 3-point or 4-point surface contact (e.g. back of the legs + both hands on armrests) Balanced posture of the trunk
 Low back pain (reliance on trunk proprioception with decline of proprioception in legs) Simultaneous demand for cognitive attention to dynamic postural control 	(Haibach, Slobounov, & Newell, 2009; Karnath & Broetz, 2003; Nishio et al., 2019; Toosizadeh, Ehsani, Miramonte, & Mohler, 2018; Vermette et al., 2019)

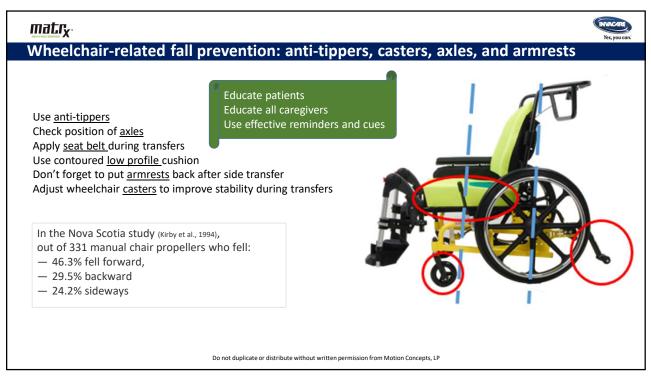
Falling while being seated or wheeled: sliding out of the wheelchair Posture – related? Wheelchair – related? Wheelchair seating - related? Image: Comparison of the wheelchair

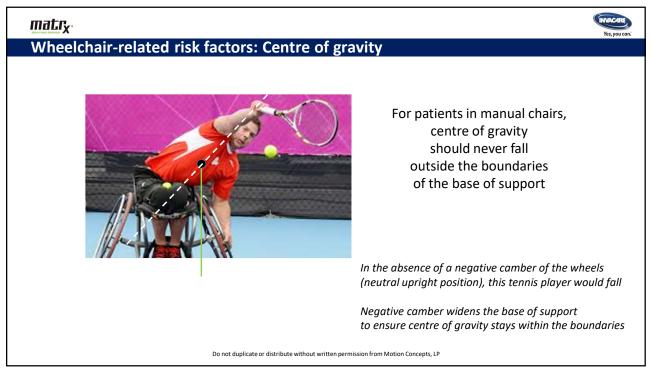
Or all the above?

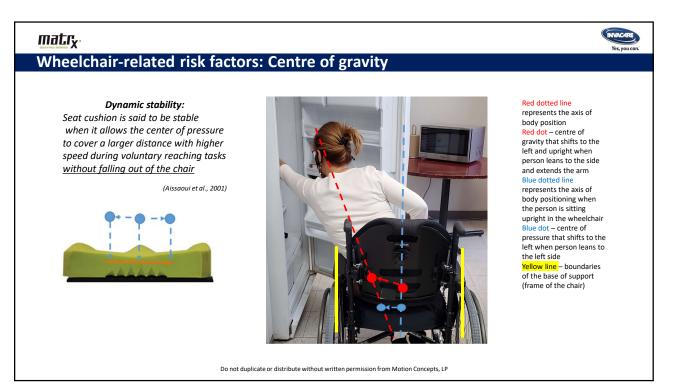
matrx

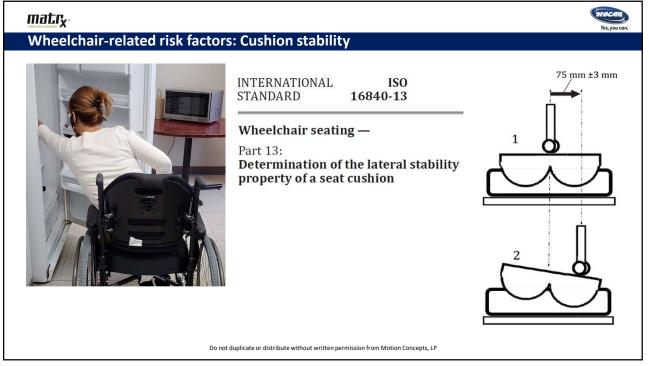
- 1. Assess patient (mat assessment)
- Assess the wheelchair
 Start from the seat, then look at the back, then the rest of the wheelchair system
- Change one thing a time and assess postural changes

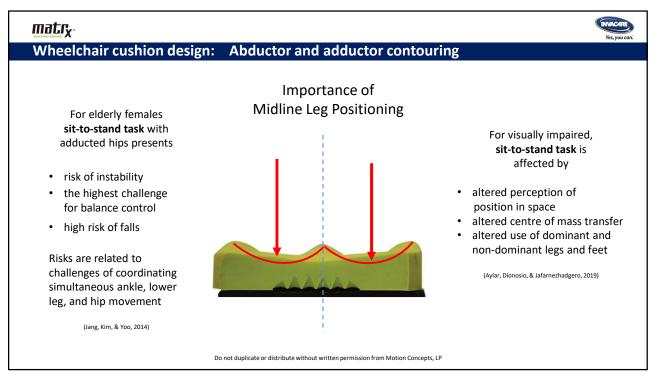


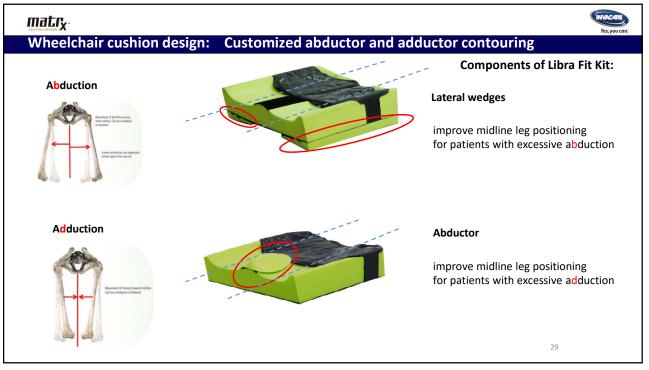


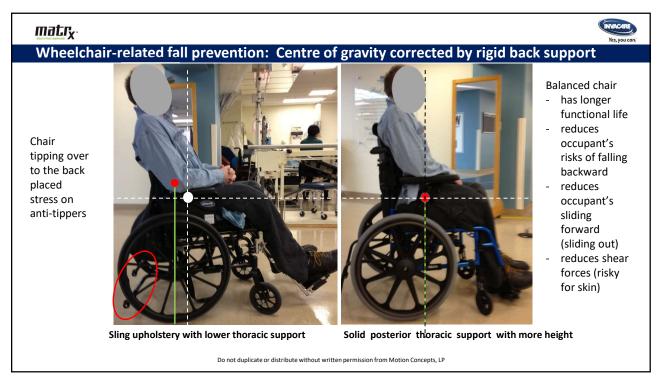


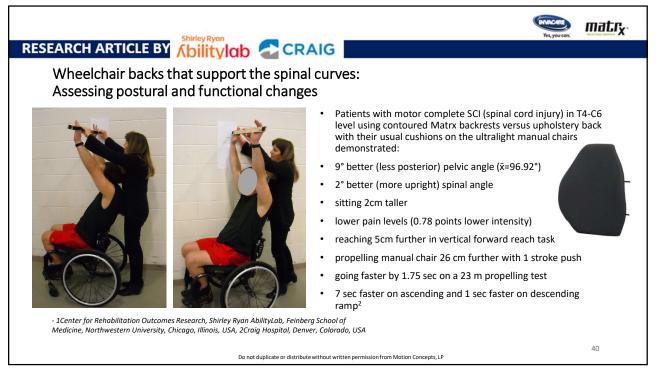


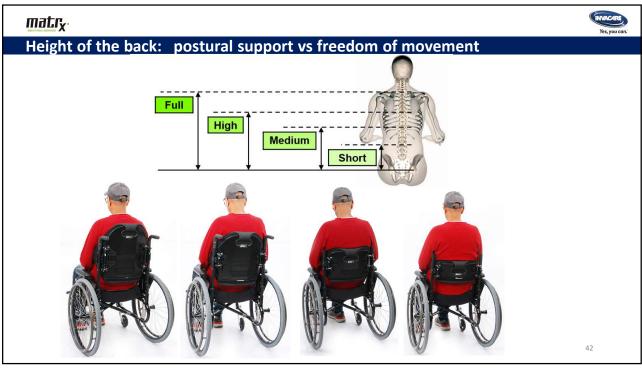


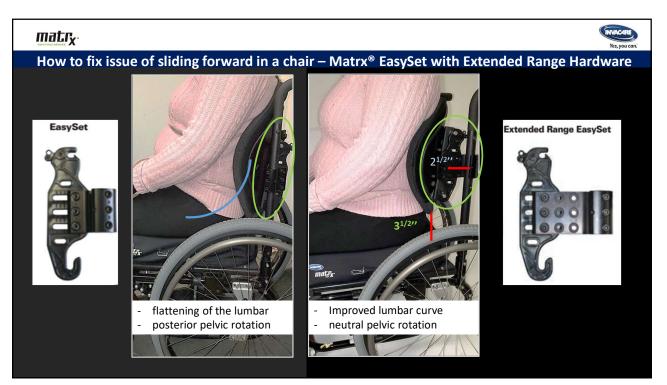


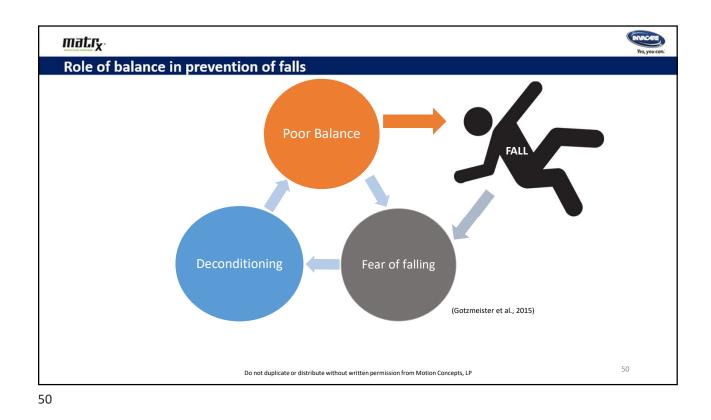




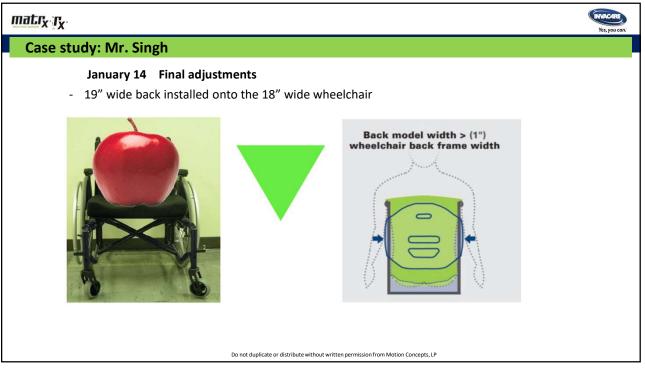




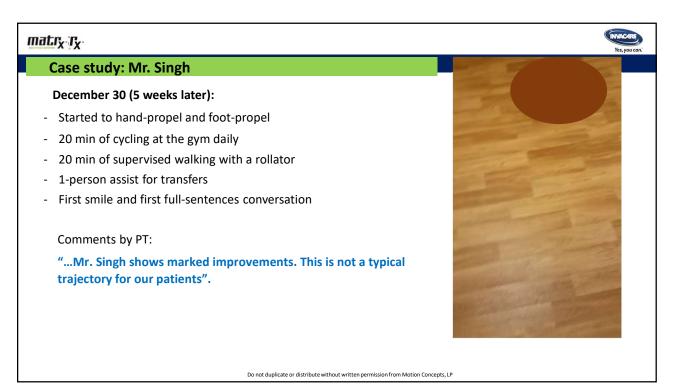


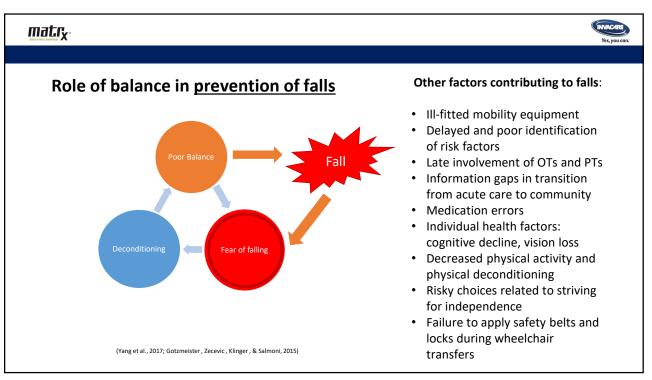


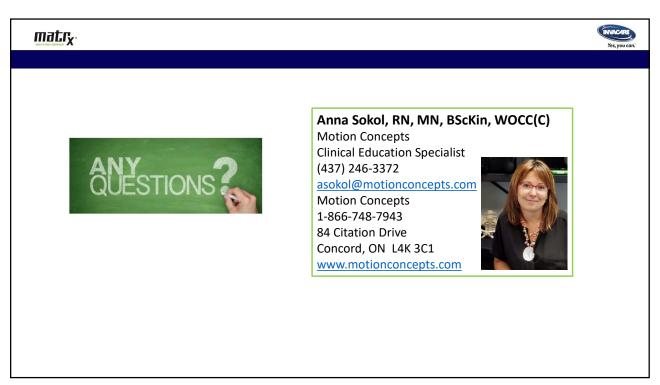
matr _x . r _x .	Ver, you can:
	Case study: Mr. Singh
	Addressing fear of falling
	Mr. Singh is 92 years old
	5 unexplained falls within 6 months
	Refusal to mobilize due to fear of falling
	Admitted to the hospital with failure to thrive
	 Treated for multiple blood clots in lower limbs, PE, and diabetes.
	 After 2 months, d/c to LTC with extreme muscle wasting, frailty, urinary incontinence
	Referred to the ADP-prescriber for a wheelchair (2 week wait)
Do not duplicate or	distribute without written permission from Motion Concepts, LP 48
3	


4	8

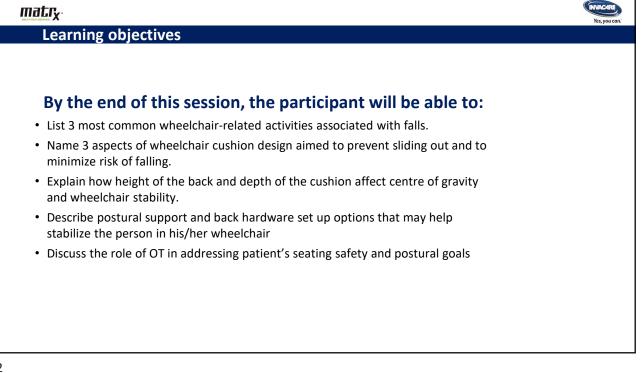
matr _x r _x	Yes, you can:
	Case study: Mr. Singh
	 November 21: LTC home provided a loaner lightweight manual chair with rigid contoured back air cushion no seat cushion rigidizer Mr. Singh was sliding forward due to seat-to-floor too high
	 After 1 week of trying, physiotherapy team requested a consult: Mr. Singh was not getting up or propelling the wheelchair wasn't communicating
Do not duplicat	e or distribute without written permission from Motion Concepts, LP 49

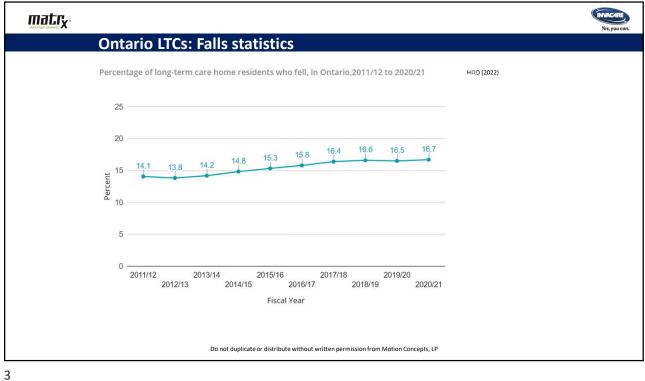

matr_x r_x


Case study: Mr. Singh

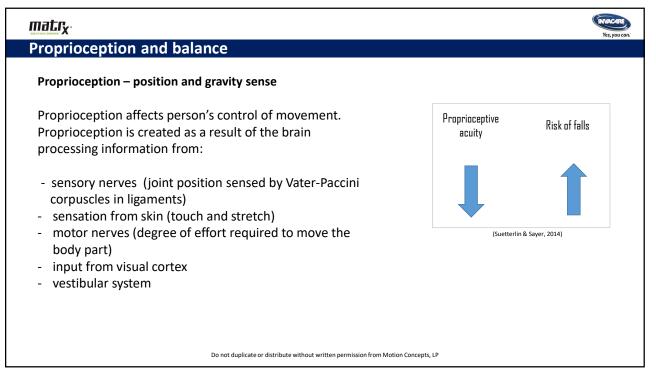

Seating products that worked:

- Proper size (18") w/c frame
- Stable skin protection & positioning cushion (1818)
- Gently contoured back 1" wider than chair frame (1918)
- Head support with adjustable mounting hardware

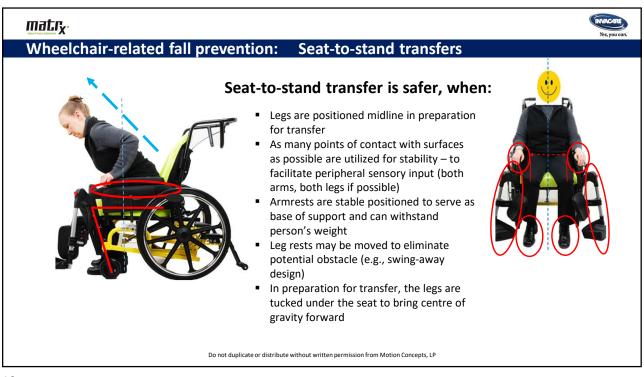


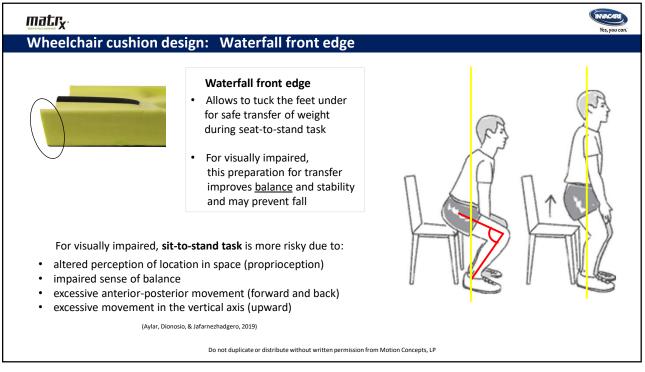


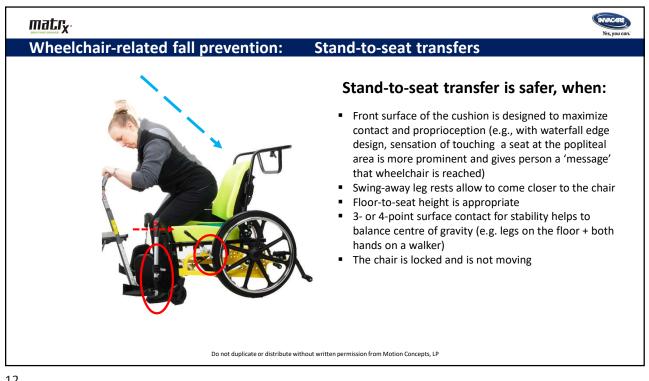
	References:
•	Aissaoul, R., Boucher, C., Bourbonnais, D., Lacoste, M., & Dansereau, J. (2001). Effect of seat cushion on dynamic stability in sitting during a reaching task in wheelchair users with paraplegia. Archives of Physical Medicine and Rehabilitation, 82, 274-281. doi: 10.1053/apmr.2001.19473
•	Aylar, M. F., Dionosio, V. C. & Jafarnezhadgero, A. A. (2019). Do the centre of mass strategies change with restricted vision during the sit-to stand task? Clinical Biomechanics, 62, 104-112.
•	Erickson, B., Hosseini, M. A., Mudhar, P. S., Soleimani, M., Aboonabi, A., Arzanpour, S., & Sparrey, C. J. (2016). The dynamics of electric powered wheelchair sideways tips and falls: experimental and computational analysis of impact forces and injury. Journal of Neuro Engineering and Rehabilitation, 13(20). doi: 10.1186/s12984-016-0128-7
•	Forslund, E.B., Jorgensen, V., Franzen, E., Opheim, A., et al. (2017). High incidence of falls and fall-related injuries in wheelchair users with spinal cord injury: a prospective study of risk indicators. Journal of Rehabilitation Medicine, 49, 144- 151. doi: 10.2340/16501977-2177
•	Gotzmeister, D., Zecevic, A. A., Klinger, L., & Salmoni, A. (2015). "People are getting lost a little bit": systemic factors that contribute to fails in community-dwelling octogenarians. Canadian Journal of Aging, 34(3), 397-410. doi: 10.1017/S071498081500015X
•	Haibach, P., Slobounov, S., & Newell, K. (2009). Egomotion and vection in young and elderly adults. Gerontology, 55(6), 637–643. https://doi.org/10.1159/000235816
•	HQO (Health Quality Ontario). (2022). Long-Term Care Home Performance: Falls. https://www.hqontario.ca/System-Performance/Long-Term-Care-Home-Performance/Falls
•	HQO (Health Quality Ontario). (2017). Insights into Quality Improvement: Home care Impressions and observations: 2016/2017 Quality Improvement Plans. Retrieved January 6, 2020, from: http://www.hqontario.ca/Portals/0/documents/qi/qip/analysis-home-care-2016-17-en.pdf
•	Jang, E. M., Kim, MH., Yoo, W. G. (2014). Comparison of the tibialis anterior and soleus muscles activities during the sit-to-stand movement with hip adduction and hip abduction in elderly females. Journal of Physical Therapy Science, 26(7), 1045-7. doi: 10.1589/jpts.26.1045
•	Karnath, HO., & Broetz, D. (2003). Understanding and treating "pusher syndrome." Physical Therapy, 83(12), 1119–1125. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=mdc&AN=14640870&site=ehost-live
•	Kirby, R. L., Ackroyd-Stolarz, S. A., Brown, M. G., Kirkland, S. A., & MacLeod, D. A. (1994). Wheelchair-related accidents caused by tips and falls among noninstitutionalized users of manually propelled wheelchairs in Nova Scotia. American Journal Of Physical Medicine & Rehabilitation, 73(5), 319-330.
·	Nishio, R., Yohei, I., Morita Y., Ito, T., Yamazaki, K., & Sakai, Y. (2019). Investigation of the functional decline in proprioceptors for low back pain using the sweep frequency. Applied Science, 9, 4988. doi:10.3390/app9234988
•	Okunribido, O. O. (2013). Patient safety during assistant propelled wheelchair transfers: the effect of the seat cushion on risk of falling. Assistive Technology, 25, 1-8. doi: 10.1080/10400435.2012.680658
•	Suetterlin, K. J. & Sayer, A. A. (2014). Proprioception: where are we now? A commentary in clinical assessment, changes across the life course, functional implications and future interventions. Age Ageing, 43(3), 313-318. doi: 10.1093/ageing/aft174
•	Toosizadeh, N., Ehsani, H., Miramonte, M., & Mohler, J. (2018). Proprioceptive impairments in high fall risk older adults: the effect of mechanical calf vibration on postural balance. Biomedical Engineering Online, 17:51.doi: 10.1186/s12938-018-0482-8
•	Varriano, B., Sulway, S., Wetmore, C., Dillon, W., Misquitta, K., Multani, N., & Rutka, J. (2021). Prevalence of cognitive and vestibular impairments in seniors experiencing fails. Conadian Journal of Neurological Sciences , 48(2), 245 – 252.
•	doi: https://doi.org/10.1017/cjn.2020.154
•	Vermette, MJ., Prince, F., Bherer, L., & Messier, J. (2019). Interaction between proprioceptive sensitivity and the attentional demand for dynamic postural control in sedentary seniors: A pilot study. Neurophysilologie Clinique, 49(6), 423- 426. doi: 10.1016/j.neucl.2019.10.047
·	Yang, K. S., van Schooten, J. Sims-Gould, H. A. McKay, F. Feldman, & S. N. Robinovitch. (2017). Sex differences in the circumstances leading to falls: Evidence from real-life falls captured on video in long-term care. Journal of the American Medical Directors Association, 1-6. doi: 10.1016/j.jamda.2017.08.011
·	Yap L. K., Au, S. Y., Ang., Y. H., & Ee C. H. (2003). Nursing home falls: a local perspective. Annals of the Academy of Medicine, Singapore, 32(6), 795 – 800.



Falls captured on video in long-term care (Yang et al., 2017)		
Activity at time of fall	Number of falls (%	
	Men (N=231)	Women (N=298)
Walking	29.2	40.3
Standing	25.0	23.8
Sitting down or lowering	15.9	14.3
Seated or wheeling	15.5	11.5
Getting up or rising	14.4	10.2
Slip	0.9	0.9


E	British Columbia LTC falls study: How do pe	ople fall?	
F	alls captured on video in long-term care (N=52	29) et al., 2017)	
	Falls while getting up 40% were associated with moving objects and loss of support	t	
-	most often due to	Number of falls suf	fered:
	incorrect shift of body weight or		
	excessive sway of the trunk	Number of falls	% of participants (N=529
		1	46 %
	alls while seated	2	20 %
r		3	10 % 6 %
-	most often due to loss of support associated with	5 or more	18 %
	moving object (60%) or	5 of more	10 /0
	sliding out of a chair (40%)		




oprioception: Why is incorrect shift o	f body weight so common in seniors?
Proprioception is <u>worsened</u> with:	Proprioception is <i>improved</i> with:
 Aging (changes in muscles and nerves) Visual changes Surgical interventions in joints Arthritis or other pathological changes Injections into the joints Neuropathy Prolonged vibration Immediately after intensive exercise Spatial neglect or 'pusher syndrome' (changes in processing visual input after CVA/strokes) 	 Improvements in vision Regular balance training on unstable surface Short-term vibration Sensation of touching a surface/object 3-point or 4-point surface contact (e.g. back of the legs + both hands on armrests) Balanced posture of the trunk
 Low back pain (reliance on trunk proprioception with decline of proprioception in legs) Simultaneous demand for cognitive attention to dynamic postural control 	(Haibach, Slobounov, & Newell, 2009; Karnath & Broetz, 2003; Nishio et al., 2019; Toosizadeh, Ehsani, Miramonte, & Mohler, 2018; Vermette et al., 2019)

Falling while being seated or wheeled: sliding out of the wheelchair Posture – related? Wheelchair – related?

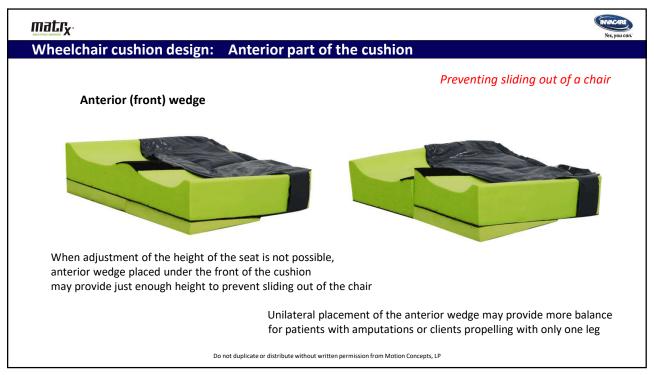
Or all the above?

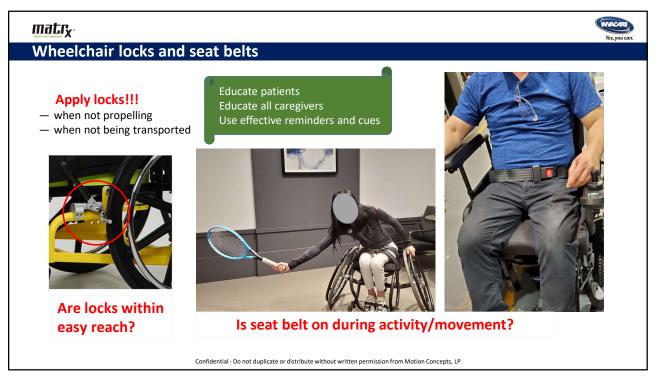
matrx

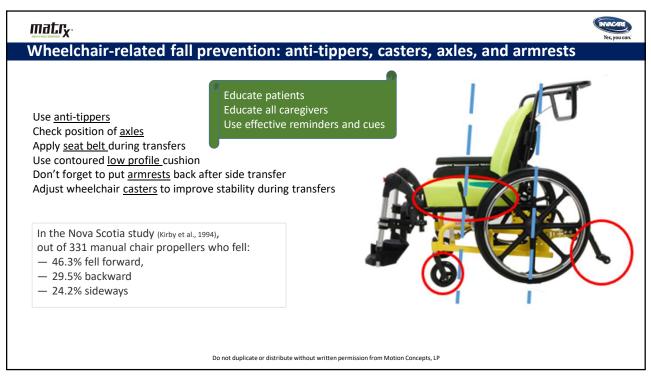
- 1. Assess patient (mat assessment)
- Assess the wheelchair
 Start from the seat, then look at the back, then the rest of the wheelchair system

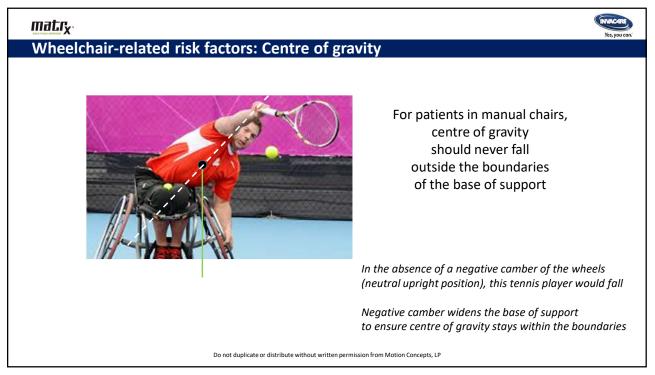
Wheelchair seating - related?

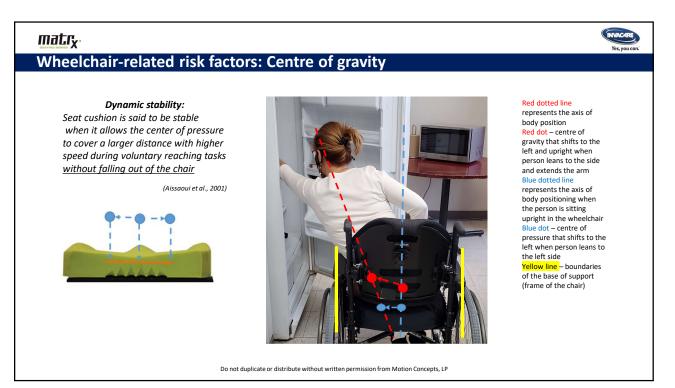
- Change one thing a time and assess postural changes



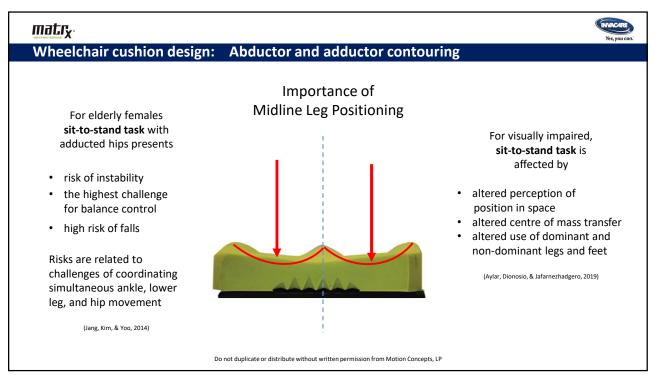


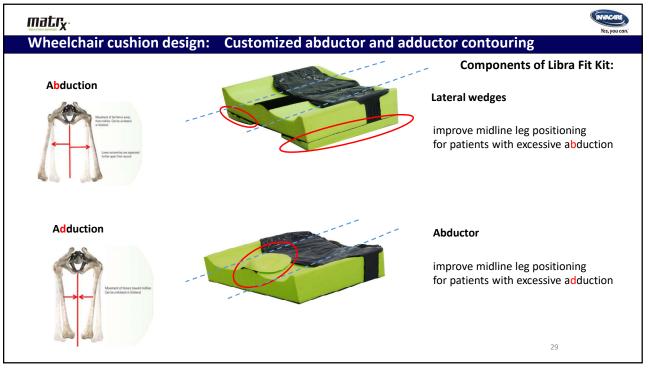


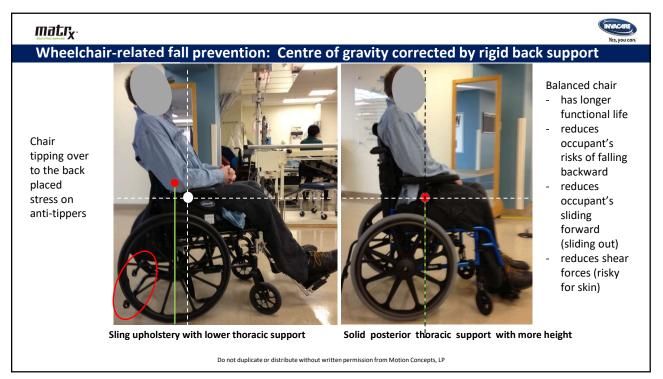


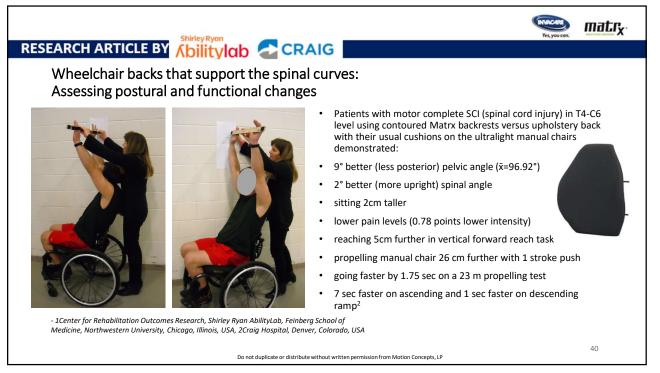


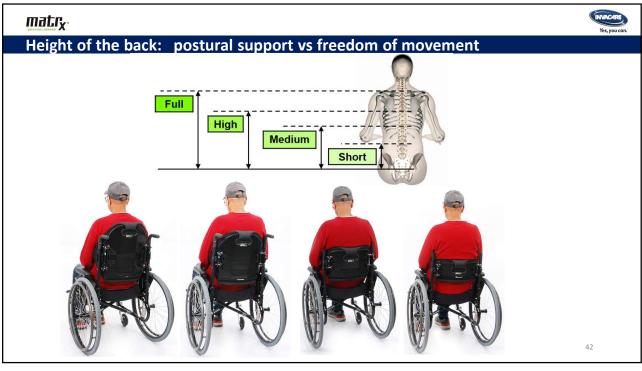


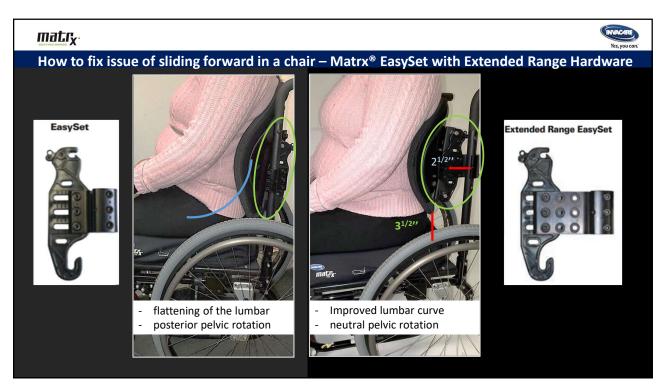


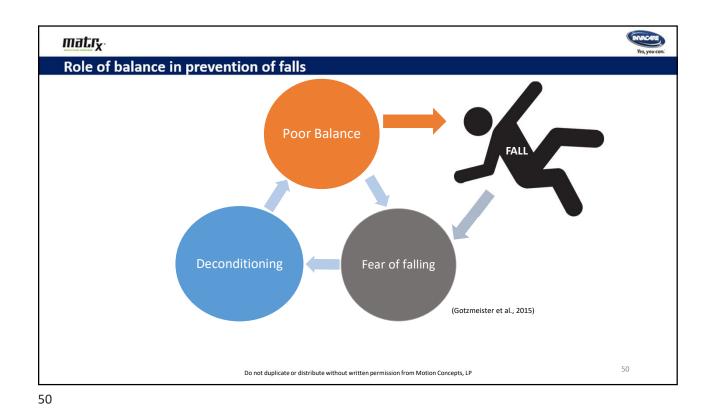


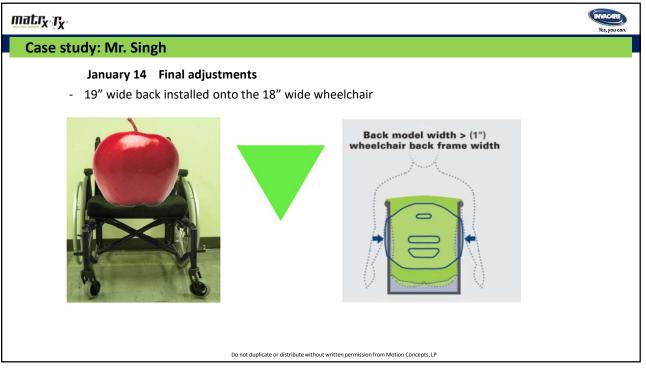




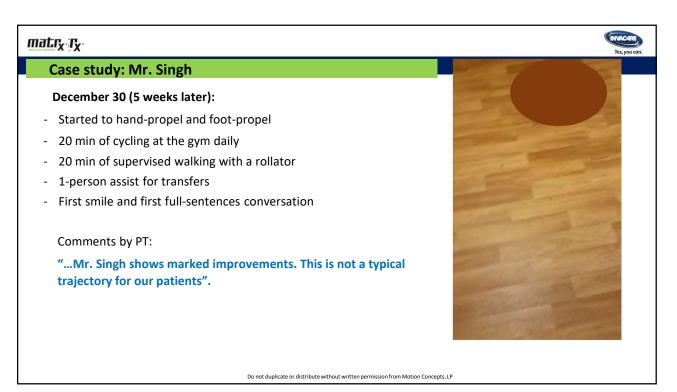


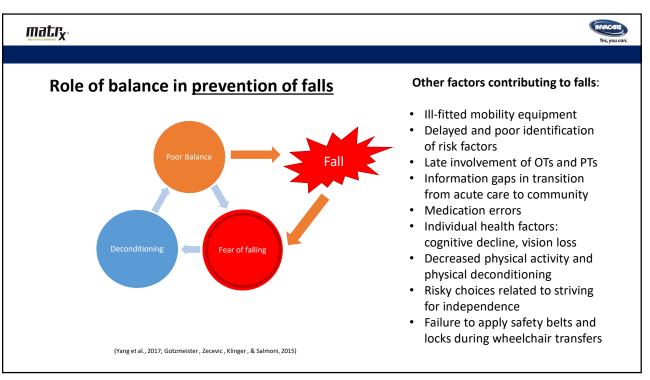


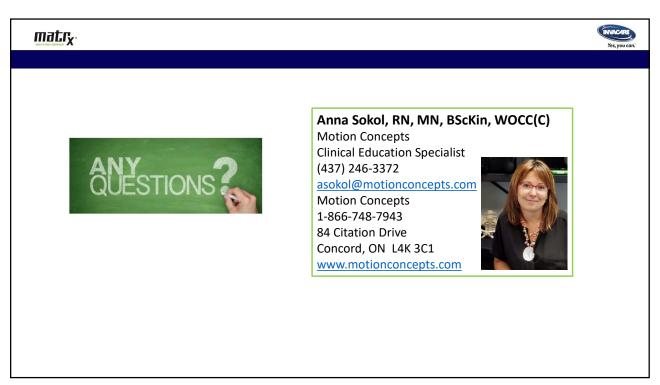



	Yes, you co
	Case study: Mr. Singh
	Addressing fear of falling
	Mr. Singh is 92 years old
	5 unexplained falls within 6 months
	Refusal to mobilize due to fear of falling
	Admitted to the hospital with failure to thrive
	Treated for multiple blood clots in lower limbs, PE, and diabetes.
	After 2 months, d/c to LTC with extreme muscle wasting, frailty, urinary incontinence
	Referred to the ADP-prescriber for a wheelchair (2 week wait)
Do not du	plicate or distribute without written permission from Motion Concepts, LP 48

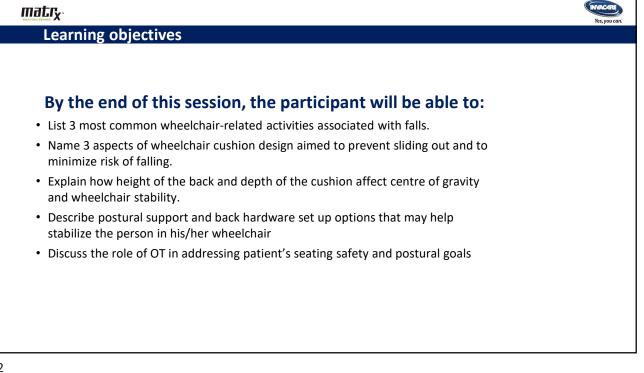
matr _x . I _X .	Yes, you can:
	Case study: Mr. Singh November 21: LTC home provided a loaner lightweight manual chair with rigid contoured back air cushion no seat cushion rigidizer Mr. Singh was sliding forward due to seat-to-floor too high
	After 1 week of trying, physiotherapy team requested a consult: - Mr. Singh was not getting up or propelling the wheelchair - wasn't communicating
Do not duplica	te or distribute without written permission from Motion Concepts, LP 49

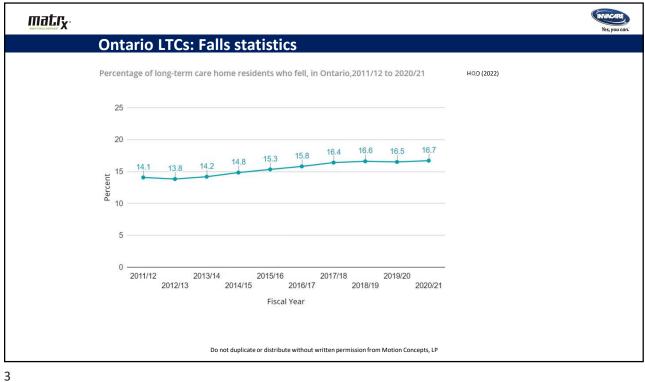

matr_x r_x


Case study: Mr. Singh

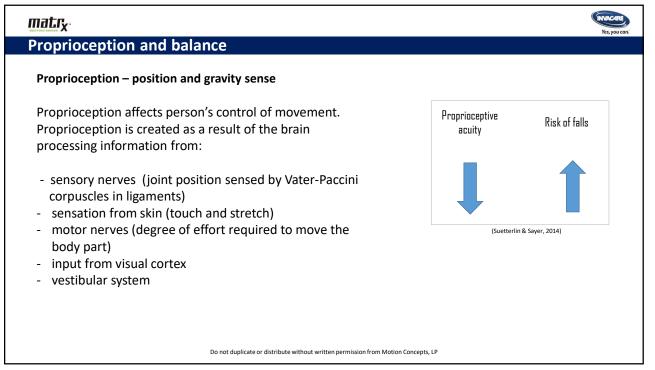

Seating products that worked:

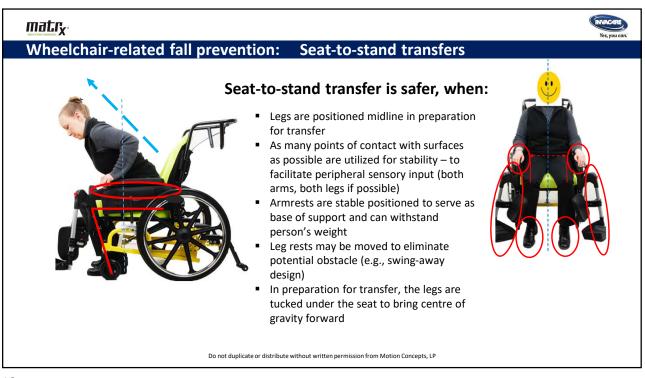
- Proper size (18") w/c frame
- Stable skin protection & positioning cushion (1818)
- Gently contoured back 1" wider than chair frame (1918)
- Head support with adjustable mounting hardware

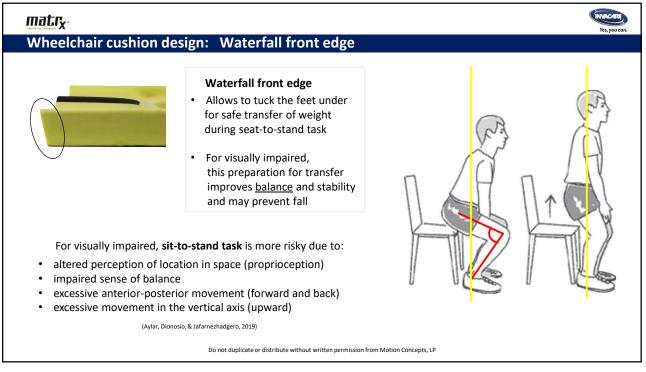


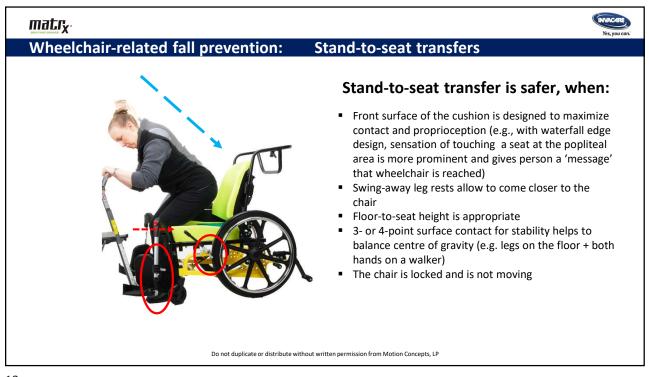


matrx	Yes, you can:
References:	
 Aissaoui, R., Boucher, C., Bourbonnais, D., Lacoste, M., & Dansereau, J. (2001). Effect of seat cushion on dynamic stability in sitting during a reaching task in wheelchair users with paraplegia. Archives of Physical M 82, 274-281. doi: 10.1053/apmr.2001.19473 	ledicine and Rehabilitation,
• Aylar, M. F., Dionosio, V. C. & Jafarnezhadgero, A. A. (2019). Do the centre of mass strategies change with restricted vision during the sit-to stand task? Clinical Biomechanics, 62, 104-112.	
 Erickson, B., Hosseini, M. A., Mudhar, P. S., Soleimani, M., Aboonabi, A., Arzanpour, S., & Sparrey, C. J. (2016). The dynamics of electric powered wheelchair sideways tips and falls: experimental and computationa and injury. Journal of Neuro Engineering and Rehabilitation, 13(20). doi: 10.1186/s12984-016-0128-7 	al analysis of impact forces
 Forslund, E.B., Jorgensen, V., Franzen, E., Opheim, A., et al. (2017). High incidence of falls and fall-related injuries in wheelchair users with spinal cord injury: a prospective study of risk indicators. Journal of Rehabi 151. doi: 10.2340/16501977-2177 	litation Medicine, 49, 144-
 Gotzmeister, D., Zecevic, A. A., Klinger, L., & Salmoni, A. (2015). "People are getting lost a little bit": systemic factors that contribute to falls in community-dwelling octogenarians. Canadian Journal of Aging, 34(3), 10.1017/S071498081500015X 	397-410. doi:
 Haibach, P., Slobounov, S., & Newell, K. (2009). Egomotion and vection in young and elderly adults. Gerontology, 55(6), 637–643. https://doi.org/10.1159/000235816 	
HQO (Health Quality Ontario). (2022). Long-Term Care Home Performance: Falls. https://www.hqontario.ca/System-Performance/Long-Term-Care-Home-Performance/Falls	
 HQO (Health Quality Ontario). (2017). Insights into Quality Improvement: Home care Impressions and observations: 2016/2017 Quality Improvement Plans. Retrieved January 6, 2020, from: http://www.hqontario.ca/Portals/0/documents/qi/qip/analysis-home-care-2016-17-en.pdf 	
 Jang, E. M., Kim, MH., Yoo, W. G. (2014). Comparison of the tibialis anterior and soleus muscles activities during the sit-to-stand movement with hip adduction and hip abduction in elderly females. Journal of Phy 1045-7. doi: 10.1589/jpts.26.1045 	sical Therapy Science, 26(7),
• Karnath, HO., & Broetz, D. (2003). Understanding and treating "pusher syndrome." Physical Therapy, 83(12), 1119–1125. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=mdc&AN=1464	0870&site=ehost-live
 Kirby, R. L., Ackroyd-Stolarz, S. A., Brown, M. G., Kirkland, S. A., & MacLeod, D. A. (1994). Wheelchair-related accidents caused by tips and falls among noninstitutionalized users of manually propelled wheelchairs i Journal Of Physical Medicine & Rehabilitation, 73(5), 319-330. 	in Nova Scotia. American
• Nishio, R., Yohei, I., Morita Y., Ito, T., Yamazaki, K., & Sakai, Y. (2019). Investigation of the functional decline in proprioceptors for low back pain using the sweep frequency. Applied Science, 9, 4988. doi:10.3390/ap	p9234988
Okunribido, O. O. (2013). Patient safety during assistant propelled wheelchair transfers: the effect of the seat cushion on risk of falling. Assistive Technology, 25, 1-8. doi: 10.1080/10400435.2012.680658	
 Suetterlin, K. J. & Sayer, A. A. (2014). Proprioception: where are we now? A commentary in clinical assessment, changes across the life course, functional implications and future interventions. Age Ageing, 43(3), 3 10.1093/ageing/aft174 	13-318. doi:
 Toosizadeh, N., Ehsani, H., Miramonte, M., & Mohler, J. (2018). Proprioceptive impairments in high fall risk older adults: the effect of mechanical calf vibration on postural balance. Biomedical Engineering Online, 3 018-0482-8 	17:51.doi: 10.1186/s12938-
• Varriano, B., Sulway, S., Wetmore, C., Dillon, W., Misquitta, K., Multani, N., & Rutka, J. (2021). Prevalence of cognitive and vestibular impairments in seniors experiencing fails. Canadian Journal of Neurological S	ciences , 48(2), 245 – 252.
doi: https://doi.org/10.1017/cjn.2020.154	
 Vermette, MJ., Prince, F., Bherer, L., & Messier, J. (2019). Interaction between proprioceptive sensitivity and the attentional demand for dynamic postural control in sedentary seniors: A pilot study. Neurophysilo 426. doi: 10.1016/j.neucl.2019.10.047 	ologie Clinique, 49(6), 423-
 Yang, K. S., van Schooten, J. Sims-Gould, H. A. McKay, F. Feldman, & S. N. Robinovitch. (2017). Sex differences in the circumstances leading to falls: Evidence from real-life falls captured on video in long-term care Medical Directors Association, 1-6. doi: 10.1016/j.jamda.2017.08.011 	Journal of the American
 Yap L. K., Au, S. Y., Ang., Y. H., & Ee C. H. (2003). Nursing home falls: a local perspective. Annals of the Academy of Medicine, Singapore, 32(6), 795 – 800. 	




Falls captured on video in long-term care (Yang et al., 2017)		
Activity at time of fall	Number of falls (%	
	Men (N=231)	Women (N=298)
Walking	29.2	40.3
Standing	25.0	23.8
Sitting down or lowering	15.9	14.3
Seated or wheeling	15.5	11.5
Getting up or rising	14.4	10.2
Slip	0.9	0.9


British Columbia LTC falls study: How do pe	ople fall?	
Falls captured on video in long-term care (N=52 (Yang	29) .et al., 2017)	
 Falls while getting up 40% were associated with moving objects and loss of suppor most often due to 	rt Number of falls suf	fered:
incorrect shift of body weight or		
excessive sway of the trunk	Number of falls	% of participants (N=529
	1	46 %
	2	20 %
Falls while seated	3	10 %
 most often due to loss of support associated with 	4	6%
moving object (60%) or	5 or more	18 %
sliding out of a chair (40%)		



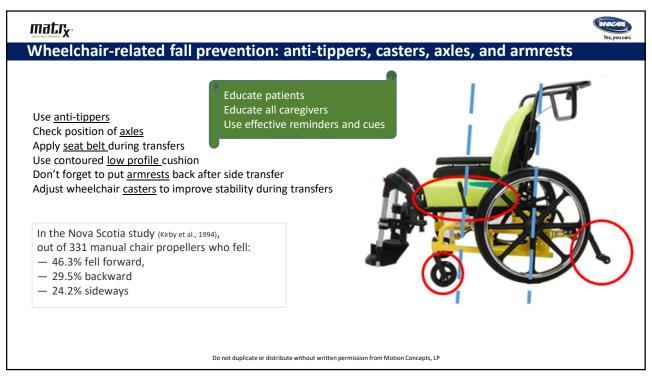
Proprioception: Why is incorrect shift of body weight so common in seniors?			
Proprioception is <u>worsened</u> with:	Proprioception is <i>improved</i> with:		
 Aging (changes in muscles and nerves) Visual changes Surgical interventions in joints Arthritis or other pathological changes Injections into the joints Neuropathy Prolonged vibration Immediately after intensive exercise Spatial neglect or 'pusher syndrome' (changes in processing visual input after CVA/strokes) Iow back pain 	 Improvements in vision Regular balance training on unstable surface Short-term vibration Sensation of touching a surface/object 3-point or 4-point surface contact (e.g. back of the legs + both hands on armrests) Balanced posture of the trunk 		
 Low back pain (reliance on trunk proprioception with decline of proprioception in legs) Simultaneous demand for cognitive attention to dynamic postural control 	(Haibach, Slobounov, & Newell, 2009; Karnath & Broetz, 2003; Nishio et al., 2019; Toosizadeh, Ehsani, Miramonte, & Mohler, 2018; Vermette et al., 2019)		

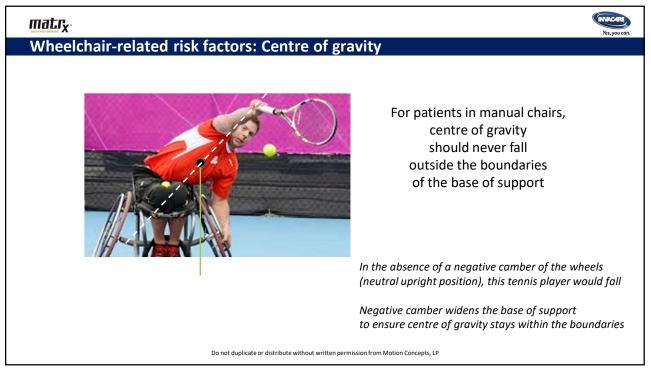
Falling while being seated or wheeled: sliding out of the wheelchair Posture – related? Wheelchair – related? Wheelchair seating - related? Image: Comparison of the seating - related?

Or all the above?

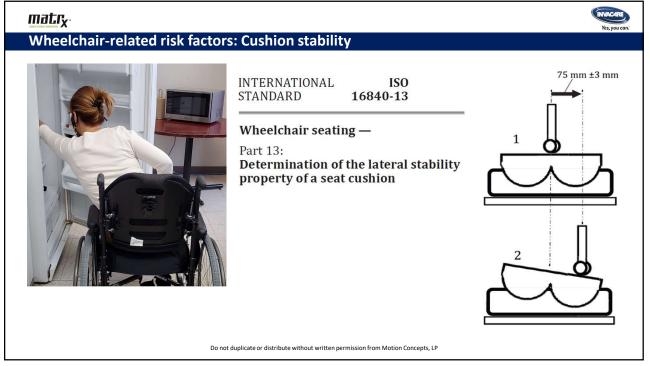
matrx

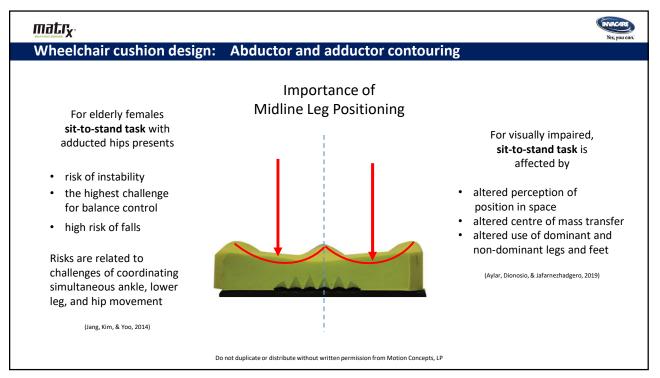
- 1. Assess patient (mat assessment)
- Assess the wheelchair
 Start from the seat, then look at the back, then the
- rest of the wheelchair system
 Change one thing a time and assess postural changes

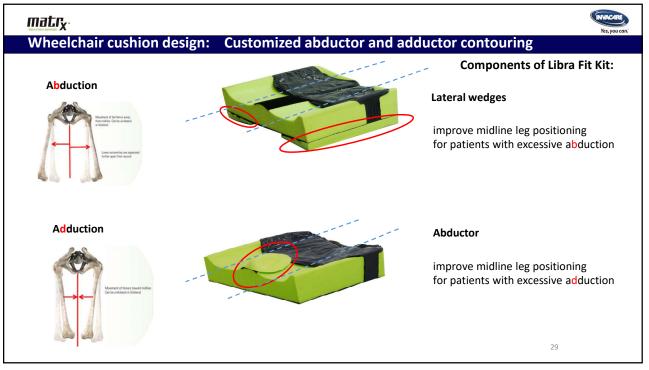


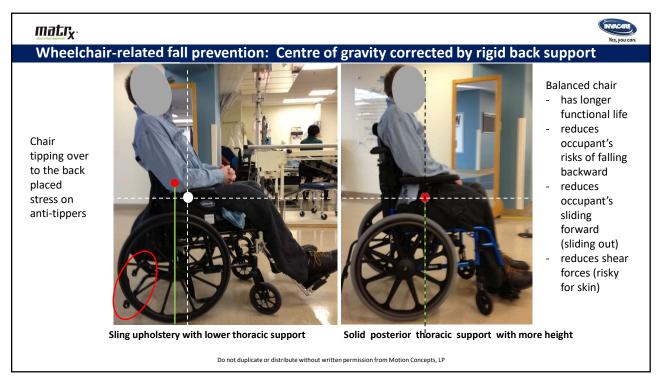


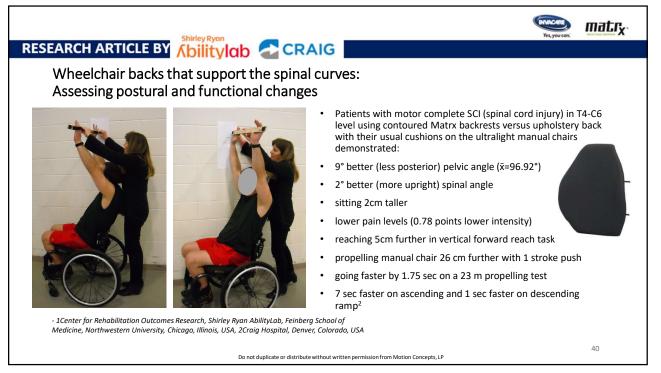


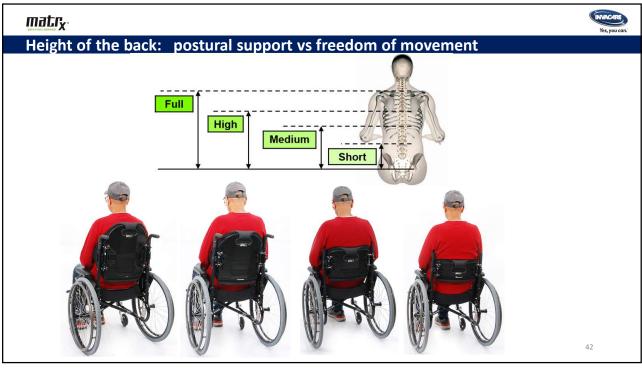


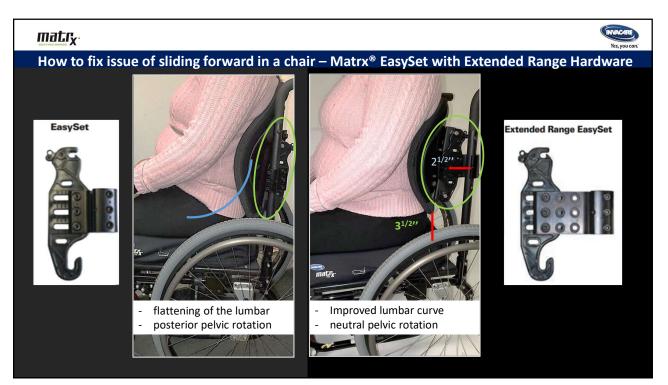


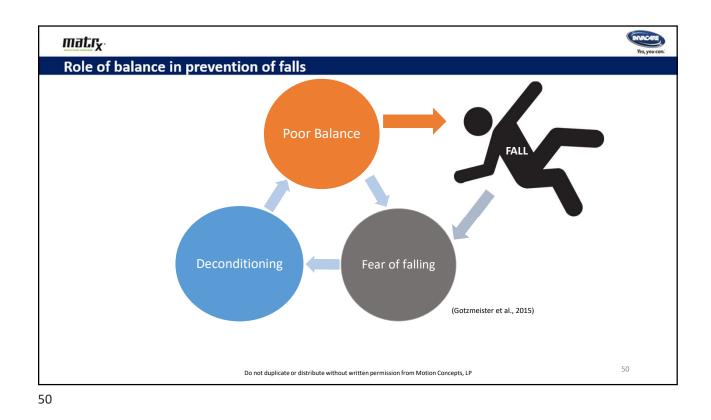


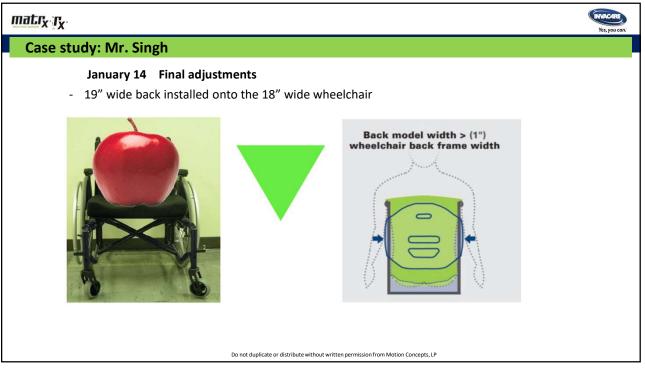




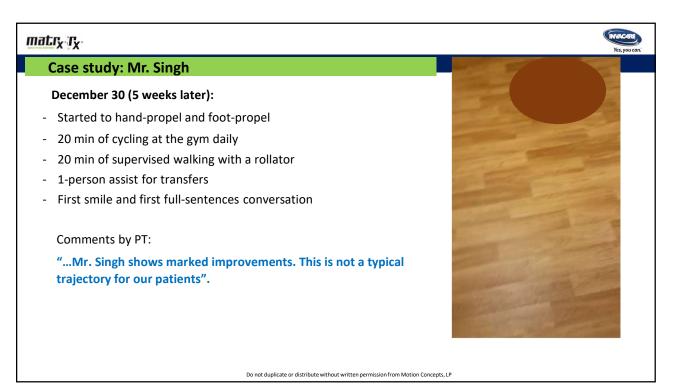


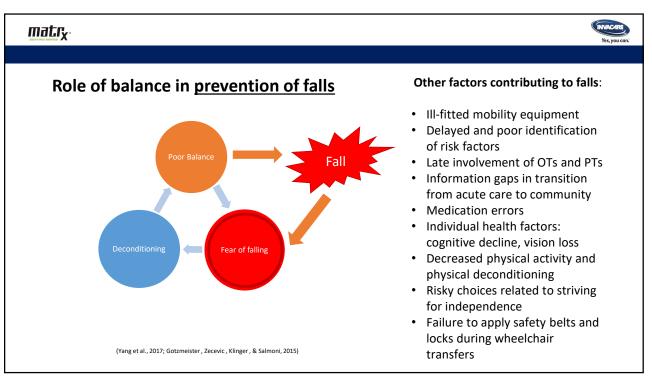


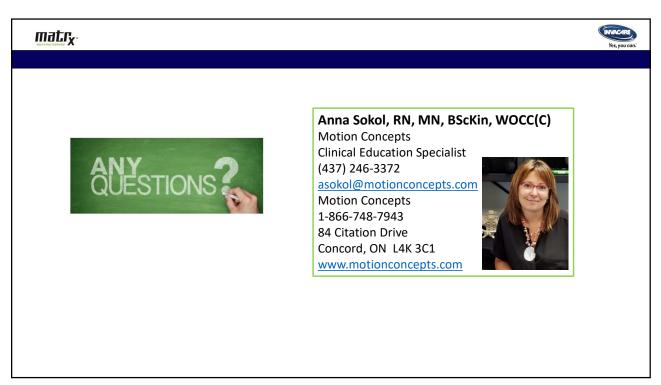



Case study: Mr. Singh Addressing fear of falling • Mr. Singh is 92 years old
Mr. Singh is 92 years old
 5 unexplained falls within 6 months
Refusal to mobilize due to fear of falling
Admitted to the hospital with failure to thrive
 Treated for multiple blood clots in lower limbs, PE, and diabetes.
 After 2 months, d/c to LTC with extreme muscle wasting, frailty, urinary incontinence
Referred to the ADP-prescriber for a wheelchair (2 week wait)
distribute without written permission from Motion Concepts, LP 48
1

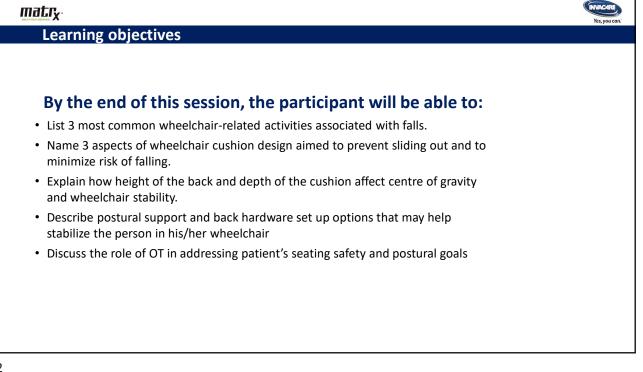
matr _x .T _x .	Yes, you can:
	Case study: Mr. Singh November 21: LTC home provided a loaner lightweight manual chair with rigid contoured back air cushion no seat cushion rigidizer Mr. Singh was sliding forward due to seat-to-floor too high After 1 week of trying, physiotherapy team requested a consult: Mr. Singh was not getting up or propelling the wheelchair Wasn't communicating
Do not duplicate	e or distribute without written permission from Motion Concepts, LP 4-2

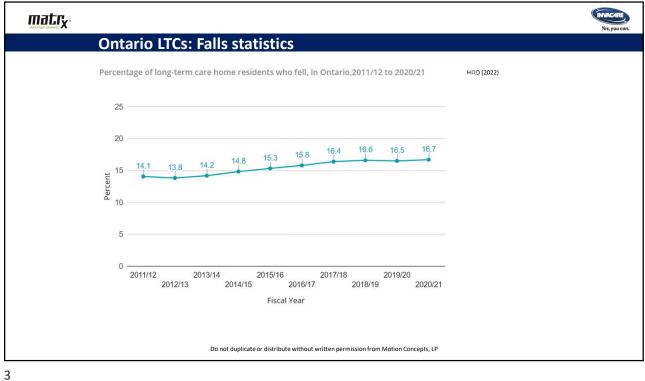

matr_x r_x


Case study: Mr. Singh

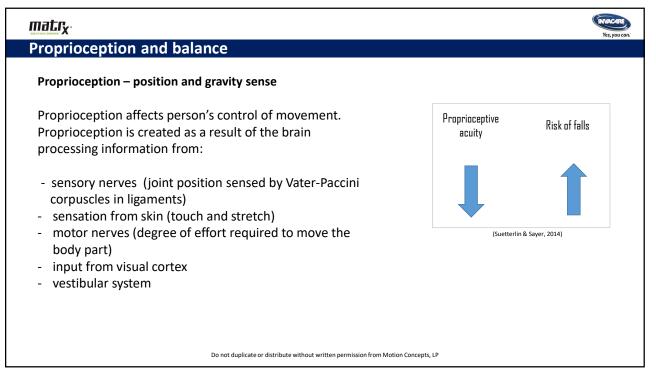

Seating products that worked:

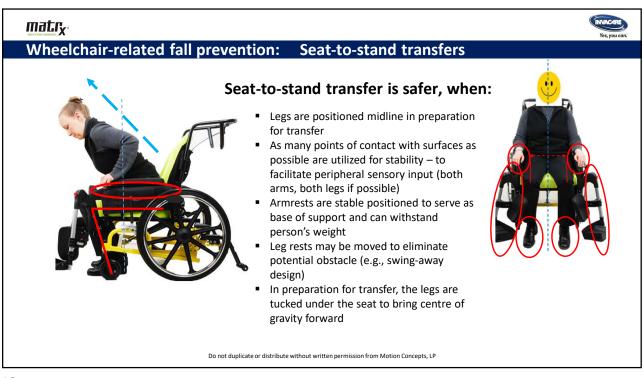
- Proper size (18") w/c frame
- Stable skin protection & positioning cushion (1818)
- Gently contoured back 1" wider than chair frame (1918)
- Head support with adjustable mounting hardware

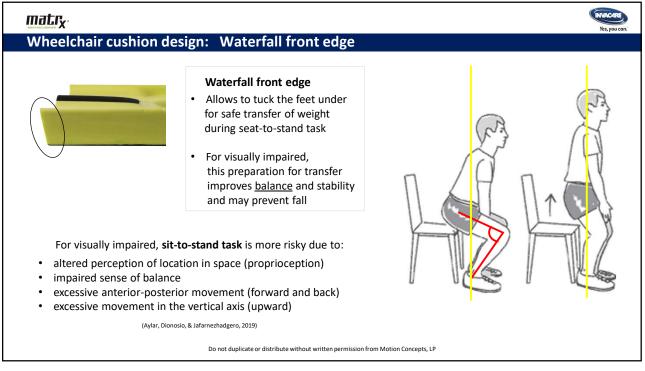


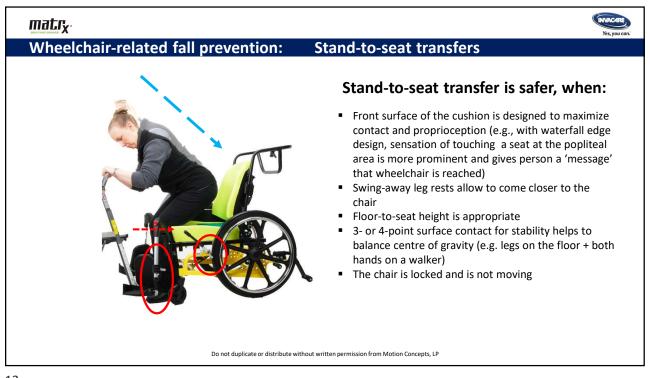


	References:
•	Alssaoui, R., Boucher, C., Bourbonnais, D., Lacoste, M., & Dansereau, J. (2001). Effect of seat cushion on dynamic stability in sitting during a reaching task in wheelchair users with paraplegia. Archives of Physical Medicine ond Rehabilitation, 82, 274-281. doi: 10.1053/apmr.2001.19473
•	Aylar, M. F., Dionosio, V. C. & Jafarnezhadgero, A. A. (2019). Do the centre of mass strategies change with restricted vision during the sit-to stand task? Clinical Biomechanics, 62, 104-112.
•	Erickson, B., Hosseini, M. A., Mudhar, P. S., Soleimani, M., Aboonabi, A., Arzanpour, S., & Sparrey, C. J. (2016). The dynamics of electric powered wheelchair sideways tips and falls: experimental and computational analysis of impact forces and injury. Journal of Neuro Engineering and Rehabilitation, 13(20). doi: 10.1186/s12984-016-0128-7
•	Forslund, E.B., Jorgensen, V., Franzen, E., Opheim, A., et al. (2017). High incidence of falls and fall-related injuries in wheelchair users with spinal cord injury: a prospective study of risk indicators. Journal of Rehabilitation Medicine, 49, 144- 151. doi: 10.2340/16501977-2177
·	Gotzmeister, D., Zecevic, A. A., Klinger, L., & Salmoni, A. (2015). "People are getting lost a little bit": systemic factors that contribute to falls in community-dwelling octogenarians. Canadian Journal of Aging, 34(3), 397-410. doi: 10.1017/S071498081500015X
•	Haibach, P., Slobounov, S., & Newell, K. (2009). Egomotion and vection in young and elderly adults. Gerontology, 55(6), 637–643. https://doi.org/10.1159/000235816
•	HQO (Health Quality Ontario). (2022). Long-Term Care Home Performance: Falls. https://www.hqontario.ca/System-Performance/Long-Term-Care-Home-Performance/Falls
•	HQO (Health Quality Ontario). (2017). Insights into Quality Improvement: Home care Impressions and observations: 2016/2017 Quality Improvement Plans. Retrieved January 6, 2020, from: http://www.hqontario.ca/Portals/0/documents/qi/qip/analysis-home-care-2016-17-en.pdf
•	Jang, E. M., Kim, MH., Yoo, W. G. (2014). Comparison of the tibialis anterior and soleus muscles activities during the sit-to-stand movement with hip adduction and hip abduction in elderly females. Journal of Physical Therapy Science, 26(7), 1045-7. doi: 10.1589/jpts.26.1045
•	Karnath, HO., & Broetz, D. (2003). Understanding and treating "pusher syndrome." Physical Therapy, 83(12), 1119–1125. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=mdc&AN=14640870&site=ehost-live
•	Kirby, R. L., Ackroyd-Stolarz, S. A., Brown, M. G., Kirkland, S. A., & MacLeod, D. A. (1994). Wheelchair-related accidents caused by tips and falls among noninstitutionalized users of manually propelled wheelchairs in Nova Scotia. American Journal Of Physical Medicine & Rehabilitation, 73(5), 819-330.
•	Nishio, R., Yohei, I., Morita Y., Ito, T., Yamazaki, K., & Sakai, Y. (2019). Investigation of the functional decline in proprioceptors for low back pain using the sweep frequency. Applied Science, 9, 4988. doi:10.3390/app9234988
·	Okunribido, O. O. (2013). Patient safety during assistant propelled wheelchair transfers: the effect of the seat cushion on risk of falling. Assistive Technology, 25, 1-8. doi: 10.1080/10400435.2012.680658
•	Suetterlin, K. J. & Sayer, A. A. (2014). Proprioception: where are we now? A commentary in clinical assessment, changes across the life course, functional implications and future interventions. Age Ageing, 43(3), 313-318. doi: 10.1093/ageing/aft174
•	Toosizadeh, N., Ehsani, H., Miramonte, M., & Mohler, J. (2018). Proprioceptive impairments in high fall risk older adults: the effect of mechanical calf vibration on postural balance. Biomedical Engineering Online, 17:51.doi: 10.1186/s12938-018-0482-8
•	Varriano, B., Sulway, S., Wetmore, C., Dillon, W., Misquitta, K., Multani, N., & Rutka, J. (2021). Prevalence of cognitive and vestibular impairments in seniors experiencing falls. Canadian Journal of Neurological Sciences, 48(2), 245 – 252.
•	doi: https://doi.org/10.1017/cjn.2020.154
•	Vermette, MJ., Prince, F., Bherer, L., & Messier, J. (2019). Interaction between proprioceptive sensitivity and the attentional demand for dynamic postural control in sedentary seniors: A pilot study. Neurophysilologie Clinique, 49(6), 423-426. doi: 10.1016/j.neucl.2019.10.047
•	Yang, K. S., van Schooten, J. Sims-Gould, H. A. McKay, F. Feldman, & S. N. Robinovitch. (2017). Sex differences in the circumstances leading to falls: Evidence from real-life falls captured on video in long-term care. Journal of the American Medical Directors Association, 1-6. doi: 10.1016/j.jamda.2017.08.011
•	Yap L. K., Au, S. Y., Ang., Y. H., & Ee C. H. (2003). Nursing home falls: a local perspective. Annals of the Academy of Medicine, Singapore, 32(6), 795 – 800.




Falls captured on video in long-term care (Yang et al., 2017)		
Activity at time of fall	Number of falls (%	
	Men (N=231)	Women (N=298)
Walking	29.2	40.3
Standing	25.0	23.8
Sitting down or lowering	15.9	14.3
Seated or wheeling	15.5	11.5
Getting up or rising	14.4	10.2
Slip	0.9	0.9


E	British Columbia LTC falls study: How do pe	ople fall?			
F	alls captured on video in long-term care (N=52	29) et al., 2017)			
	Falls while getting up 40% were associated with moving objects and loss of support	t			
-	most often due to	Number of falls suf	fered:		
	incorrect shift of body weight or				
	excessive sway of the trunk	Number of falls	% of participants (N=529		
		1	46 %		
	alls while seated	2	20 %		
r		3	10 % 6 %		
-	most often due to loss of support associated with	5 or more	18%		
	moving object (60%) or	5 of more	10 /0		
	sliding out of a chair (40%)				



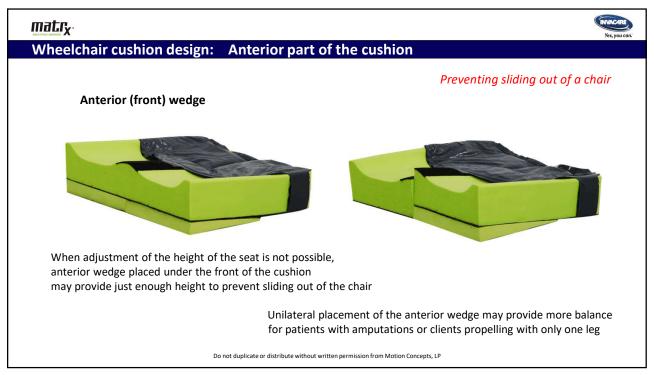
Proprioception: Why is incorrect shift of body weight so common in seniors?			
Proprioception is <u>worsened</u> with:	Proprioception is <i>improved</i> with:		
 Aging (changes in muscles and nerves) Visual changes Surgical interventions in joints Arthritis or other pathological changes Injections into the joints Neuropathy Prolonged vibration Immediately after intensive exercise Spatial neglect or 'pusher syndrome' (changes in processing visual input after CVA/strokes) Low back pain 	 Improvements in vision Regular balance training on unstable surface Short-term vibration Sensation of touching a surface/object 3-point or 4-point surface contact (e.g. back of the legs + both hands on armrests) Balanced posture of the trunk 		
 Low back pain (reliance on trunk proprioception with decline of proprioception in legs) Simultaneous demand for cognitive attention to dynamic postural control 	(Haibach, Slobounov, & Newell, 2009; Karnath & Broetz, 2003; Nishio et al., 2019; Toosizadeh, Ehsani, Miramonte, & Mohler, 2018; Vermette et al., 2019)		

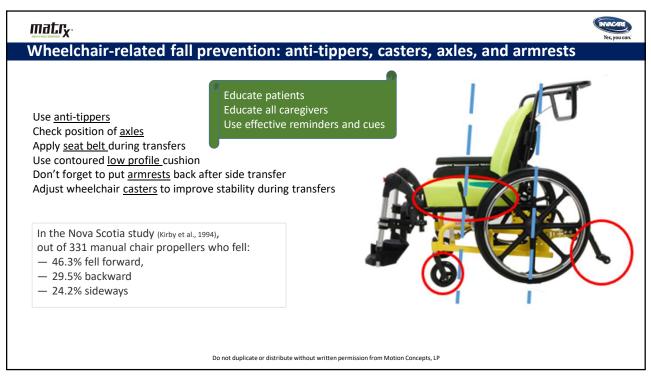
Falling while being seated or wheeled: sliding out of the wheelchair Posture – related? Wheelchair – related? Wheelchair seating - related? Image: Comparison of the wheelchair

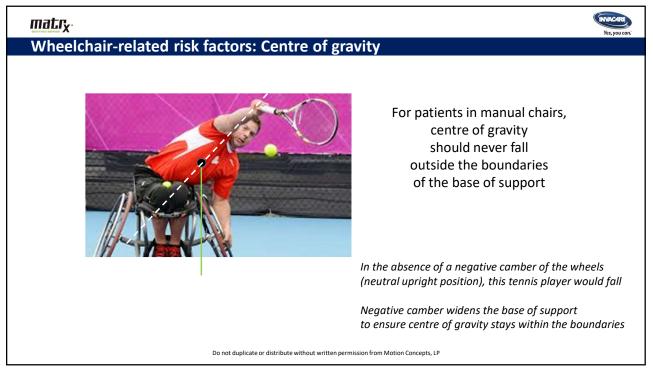
Or all the above?

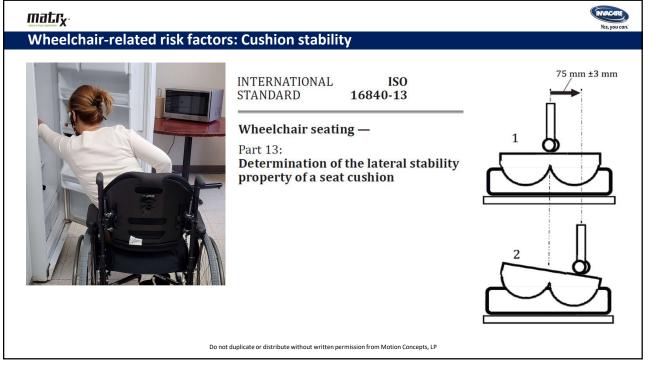
matrx

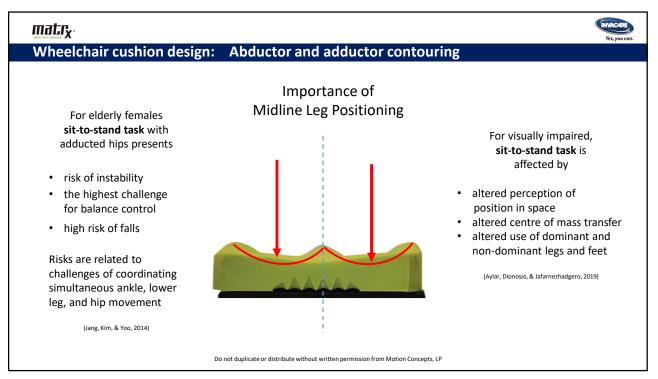
- 1. Assess patient (mat assessment)
- Assess the wheelchair
 Start from the seat, then look at the back, then the rest of the wheelchair system
- Change one thing a time and assess postural changes

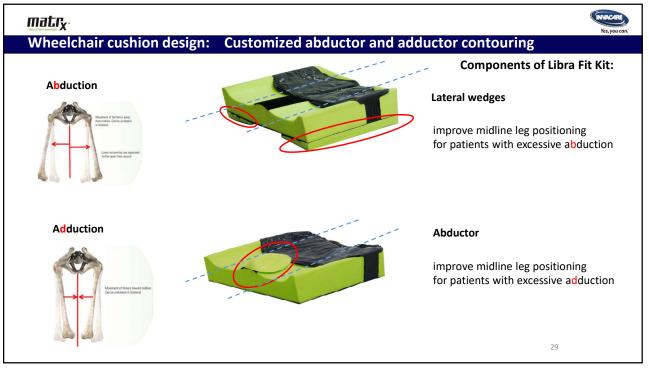


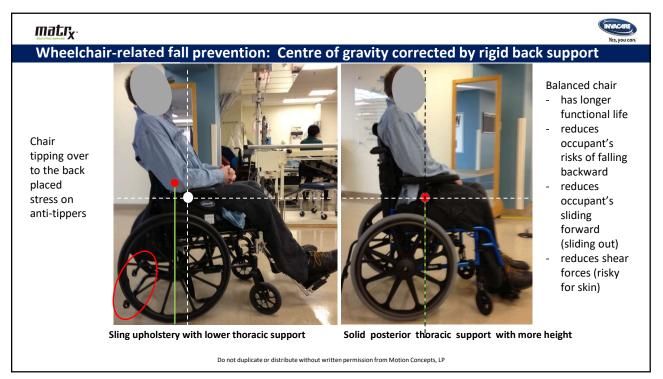


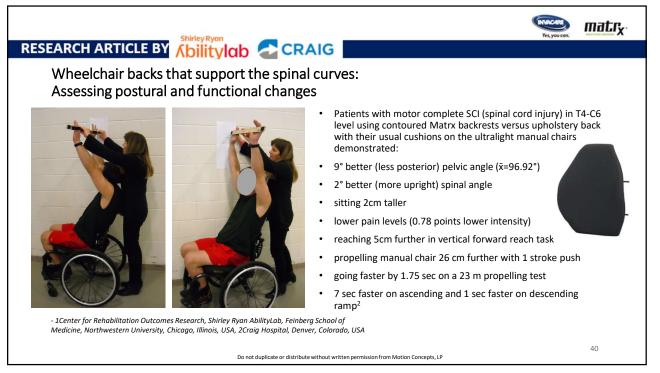


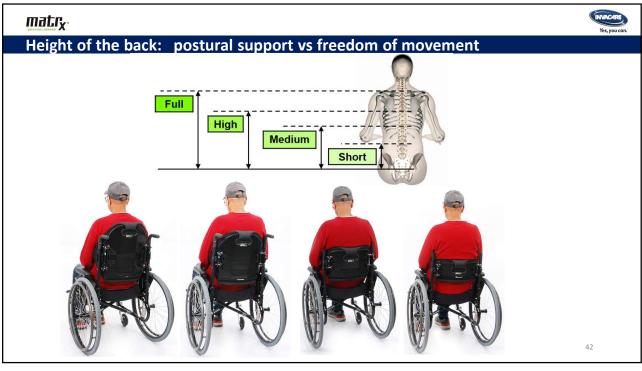


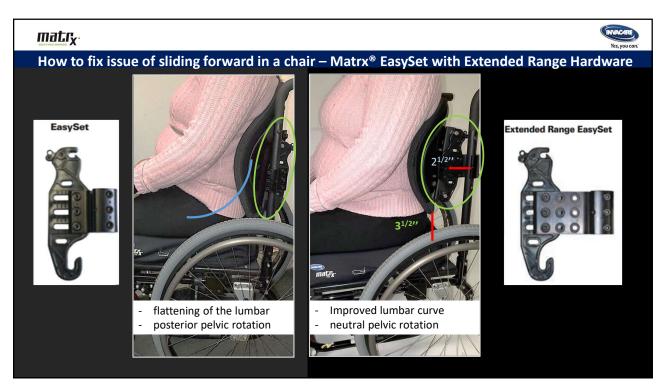


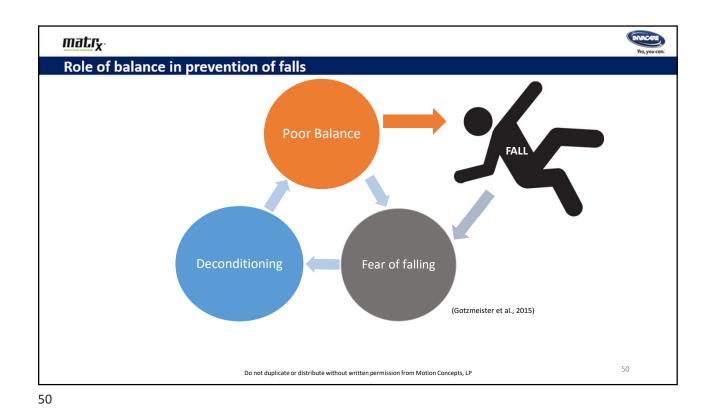


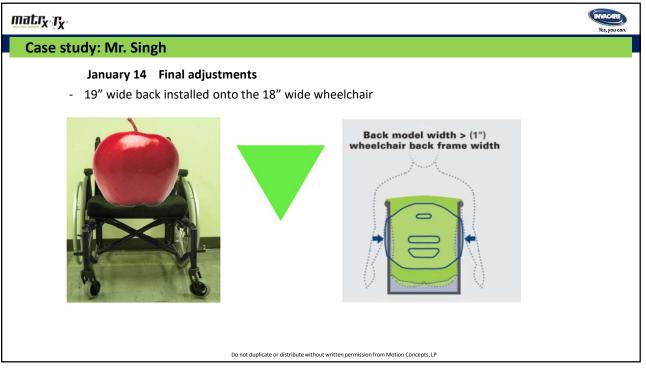




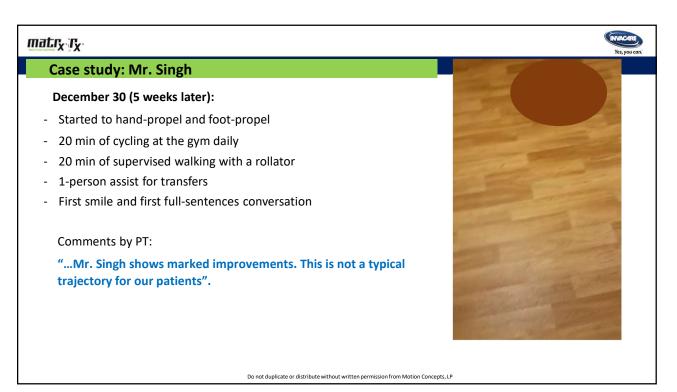


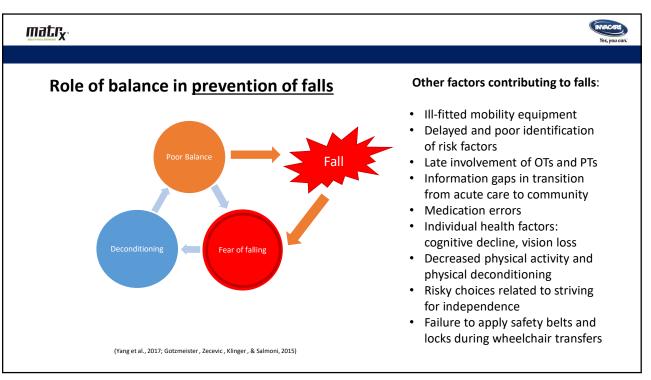


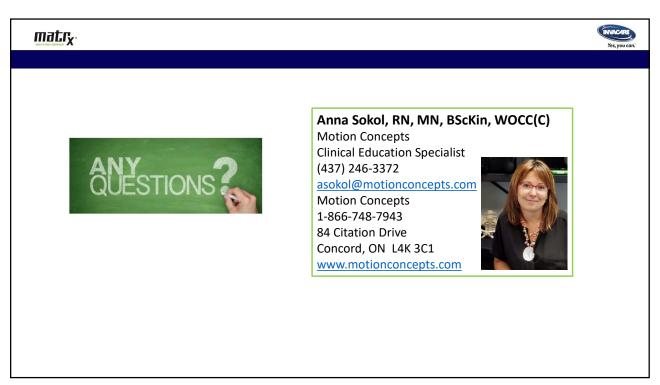



matr _x r _x	Yes, you can.
	Case study: Mr. Singh
	Addressing fear of falling
	• Mr. Singh is 92 years old
	• 5 unexplained falls within 6 months
	Refusal to mobilize due to fear of falling
	Admitted to the hospital with failure to thrive
	• Treated for multiple blood clots in lower limbs, PE, and diabetes.
	 After 2 months, d/c to LTC with extreme muscle wasting, frailty, urinary incontinence
	Referred to the ADP-prescriber for a wheelchair (2 week wait)
Do not duplicate	or distribute without written permission from Motion Concepts, LP 48

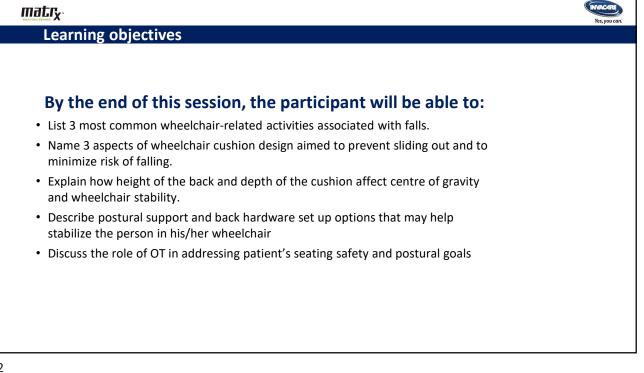
matr _x .T _x	Yes, you can:
<image/>	 Case study: Mr. Singh November 21: LTC home provided a loaner lightweight manual chair with rigid contoured back air cushion no seat cushion rigidizer Mr. Singh was sliding forward due to seat-to-floor too high After 1 week of trying, physiotherapy team requested a consult: Mr. Singh was not getting up or propelling the wheelchair wasn't communicating
Do not duplicate	e or distribute without written permission from Motion Concepts, LP 49

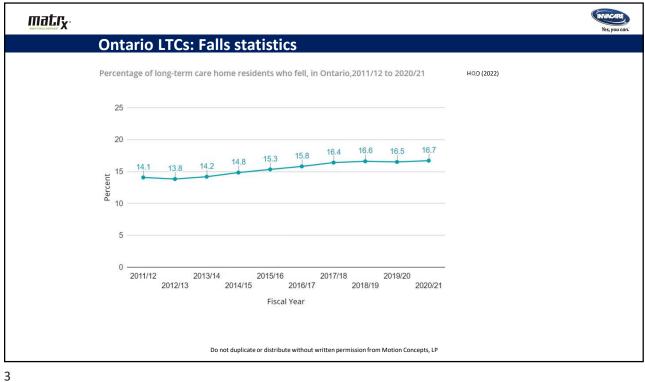

matr_x r_x


Case study: Mr. Singh

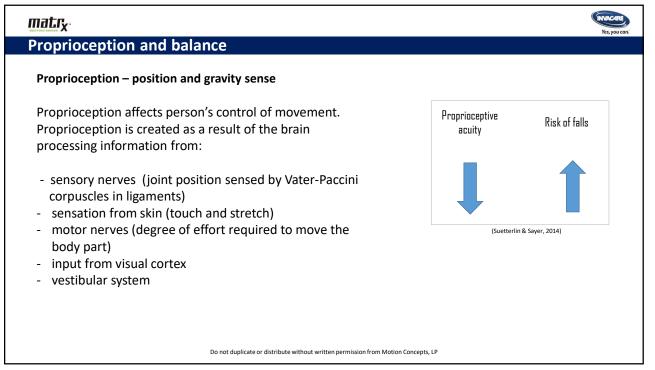

Seating products that worked:

- Proper size (18") w/c frame
- Stable skin protection & positioning cushion (1818)
- Gently contoured back 1" wider than chair frame (1918)
- Head support with adjustable mounting hardware

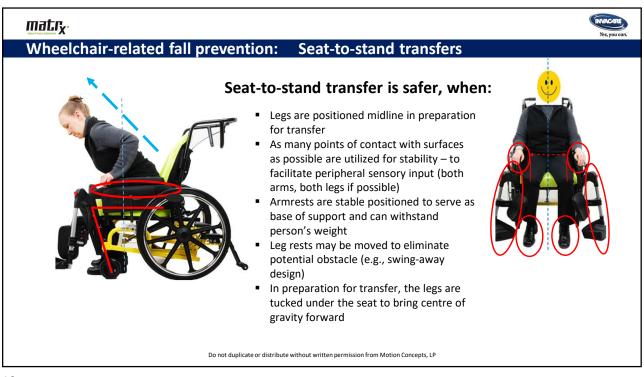


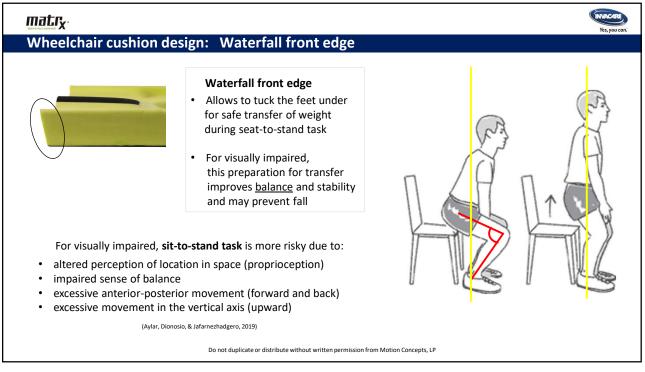


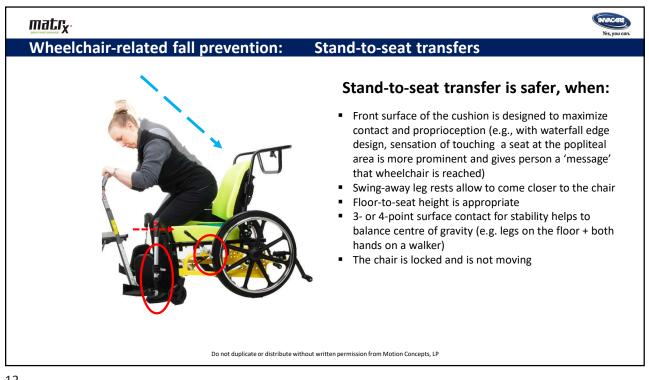
	References:
•	Aissaoul, R., Boucher, C., Bourbonnais, D., Lacoste, M., & Dansereau, J. (2001). Effect of seat cushion on dynamic stability in sitting during a reaching task in wheelchair users with paraplegia. Archives of Physical Medicine and Rehabilitation, 82, 274-281. doi: 10.1053/apmr.2001.19473
•	Aylar, M. F., Dionosio, V. C. & Jafarnezhadgero, A. A. (2019). Do the centre of mass strategies change with restricted vision during the sit-to stand task? Clinical Biomechanics, 62, 104-112.
•	Erickson, B., Hosseini, M. A., Mudhar, P. S., Soleimani, M., Aboonabi, A., Arzanpour, S., & Sparrey, C. J. (2016). The dynamics of electric powered wheelchair sideways tips and falls: experimental and computational analysis of impact forces and injury. Journal of Neuro Engineering and Rehabilitation, 13(20). doi: 10.1186/s12984-016-0128-7
•	Forslund, E.B., Jorgensen, V., Franzen, E., Opheim, A., et al. (2017). High incidence of falls and fall-related injuries in wheelchair users with spinal cord injury: a prospective study of risk indicators. Journal of Rehabilitation Medicine, 49, 144- 151. doi: 10.2340/16501977-2177
•	Gotzmeister, D., Zecevic, A. A., Klinger, L., & Salmoni, A. (2015). "People are getting lost a little bit": systemic factors that contribute to fails in community-dwelling octogenarians. Canadian Journal of Aging, 34(3), 397-410. doi: 10.1017/S071498081500015X
•	Haibach, P., Slobounov, S., & Newell, K. (2009). Egomotion and vection in young and elderly adults. Gerontology, 55(6), 637–643. https://doi.org/10.1159/000235816
•	HQO (Health Quality Ontario). (2022). Long-Term Care Home Performance: Falls. https://www.hqontario.ca/System-Performance/Long-Term-Care-Home-Performance/Falls
•	HQO (Health Quality Ontario). (2017). Insights into Quality Improvement: Home care Impressions and observations: 2016/2017 Quality Improvement Plans. Retrieved January 6, 2020, from: http://www.hqontario.ca/Portals/0/documents/qi/qip/analysis-home-care-2016-17-en.pdf
•	Jang, E. M., Kim, MH., Yoo, W. G. (2014). Comparison of the tibialis anterior and soleus muscles activities during the sit-to-stand movement with hip adduction and hip abduction in elderly females. Journal of Physical Therapy Science, 26(7), 1045-7. doi: 10.1589/jpts.26.1045
•	Karnath, HO., & Broetz, D. (2003). Understanding and treating "pusher syndrome." Physical Therapy, 83(12), 1119–1125. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=mdc&AN=14640870&site=ehost-live
•	Kirby, R. L., Ackroyd-Stolarz, S. A., Brown, M. G., Kirkland, S. A., & MacLeod, D. A. (1994). Wheelchair-related accidents caused by tips and falls among noninstitutionalized users of manually propelled wheelchairs in Nova Scotia. American Journal Of Physical Medicine & Rehabilitation, 73(5), 319-330.
·	Nishio, R., Yohei, I., Morita Y., Ito, T., Yamazaki, K., & Sakai, Y. (2019). Investigation of the functional decline in proprioceptors for low back pain using the sweep frequency. Applied Science, 9, 4988. doi:10.3390/app9234988
•	Okunribido, O. O. (2013). Patient safety during assistant propelled wheelchair transfers: the effect of the seat cushion on risk of falling. Assistive Technology, 25, 1-8. doi: 10.1080/10400435.2012.680658
•	Suetterlin, K. J. & Sayer, A. A. (2014). Proprioception: where are we now? A commentary in clinical assessment, changes across the life course, functional implications and future interventions. Age Ageing, 43(3), 313-318. doi: 10.1093/ageing/aft174
•	Toosizadeh, N., Ehsani, H., Miramonte, M., & Mohler, J. (2018). Proprioceptive impairments in high fall risk older adults: the effect of mechanical calf vibration on postural balance. Biomedical Engineering Online, 17:51.doi: 10.1186/s12938-018-0482-8
•	Varriano, B., Sulway, S., Wetmore, C., Dillon, W., Misquitta, K., Multani, N., & Rutka, J. (2021). Prevalence of cognitive and vestibular impairments in seniors experiencing falls. Canadian Journal of Neurological Sciences, 48(2), 245 – 252.
•	doi: https://doi.org/10.1017/cjn.2020.154
•	Vermette, MJ., Prince, F., Bherer, L., & Messier, J. (2019). Interaction between proprioceptive sensitivity and the attentional demand for dynamic postural control in sedentary seniors: A pilot study. Neurophysilologie Clinique; 49(6), 423- 426. doi: 10.1016/j.neucl.2019.10.047
•	Yang, K. S., van Schooten, J. Sims-Gould, H. A. McKay, F. Feldman, & S. N. Robinovitch. (2017). Sex differences in the circumstances leading to falls: Evidence from real-life falls captured on video in long-term care. Journal of the American Medical Directors Association, 1-6. doi: 10.1016/j.jamda.2017.08.011
·	Yap L. K., Au, S. Y., Ang., Y. H., & Ee C. H. (2003). Nursing home falls: a local perspective. Annals of the Academy of Medicine, Singapore, 32(6), 795 – 800.



Falls captured on video in long-term care (Yang et al., 2017)			
Activity at time of fall	Number of falls (%		
	Men (N=231)	Women (N=298)	
Walking	29.2	40.3	
Standing	25.0	23.8	
Sitting down or lowering	15.9	14.3	
Seated or wheeling	15.5	11.5	
Getting up or rising	14.4	10.2	
Slip	0.9	0.9	


British Columbia LTC falls study: How do pe	ople fall?				
Falls captured on video in long-term care (N=529) (Yang et al., 2017)					
 Falls while getting up 40% were associated with moving objects and loss of support most often due to Number of falls suffered:					
incorrect shift of body weight or					
excessive sway of the trunk	Number of falls	% of participants (N=529			
	1	46 %			
	2	20 %			
Falls while seated	3	10 %			
 most often due to loss of support associated with 	4	6%			
moving object (60%) or	5 or more	18 %			
sliding out of a chair (40%)					




Proprioception: Why is incorrect shift of body weight so common in seniors?				
Proprioception is <u>worsened</u> with:	Proprioception is <i>improved</i> with:			
 Aging (changes in muscles and nerves) Visual changes Surgical interventions in joints Arthritis or other pathological changes Injections into the joints Neuropathy Prolonged vibration Immediately after intensive exercise Spatial neglect or 'pusher syndrome' (changes in processing visual input after CVA/strokes) 	 Improvements in vision Regular balance training on unstable surface Short-term vibration Sensation of touching a surface/object 3-point or 4-point surface contact (e.g. back of the legs + both hands on armrests) Balanced posture of the trunk 			
 Low back pain (reliance on trunk proprioception with decline of proprioception in legs) Simultaneous demand for cognitive attention to dynamic postural control 	(Haibach, Slobounov, & Newell, 2009; Karnath & Broetz, 2003; Nishio et al., 2019; Toosizadeh, Ehsani, Miramonte, & Mohler, 2018; Vermette et al., 2019)			

Falling while being seated or wheeled: sliding out of the wheelchair Posture – related? Wheelchair – related?

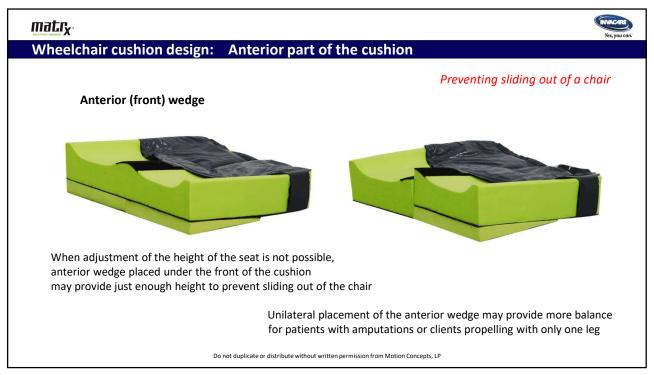
Or all the above?

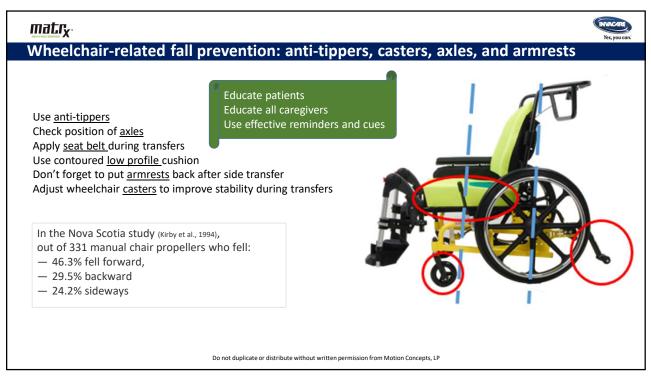
matrx

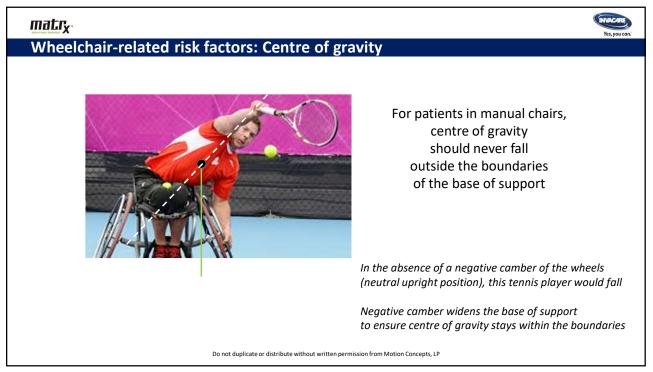
- 1. Assess patient (mat assessment)
- Assess the wheelchair
 Start from the seat, then look at the back, then the rest of the wheelchair system

Wheelchair seating - related?

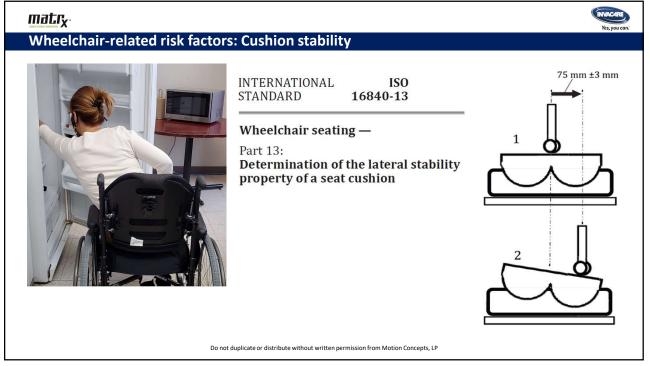
- Change one thing a time and assess postural changes

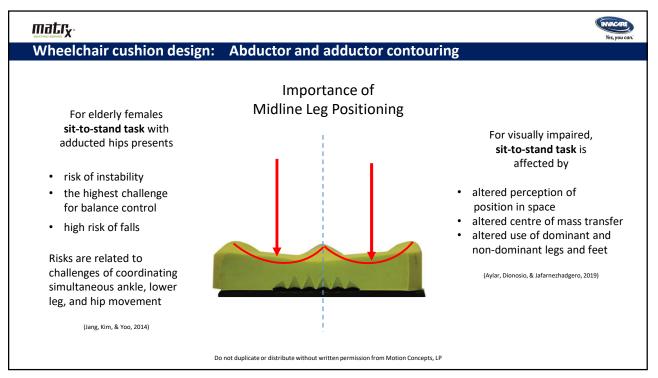


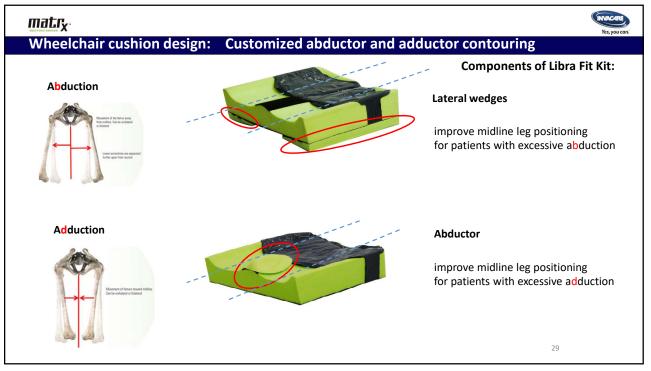


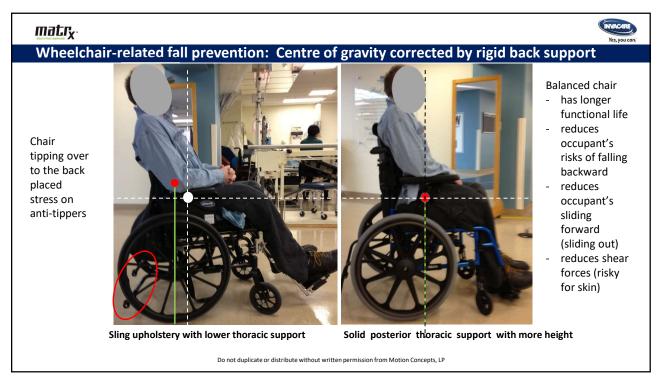


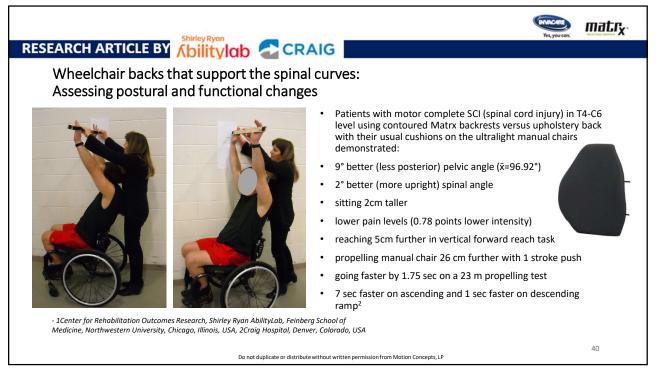


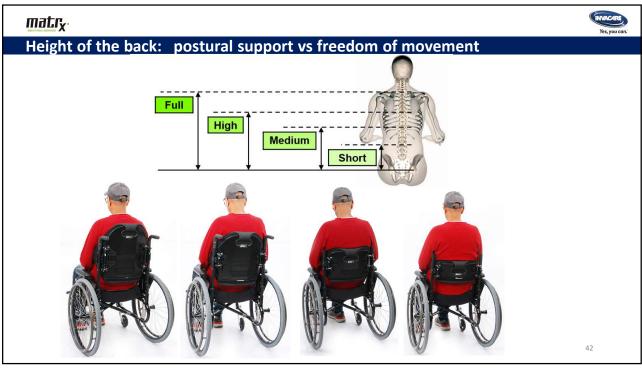


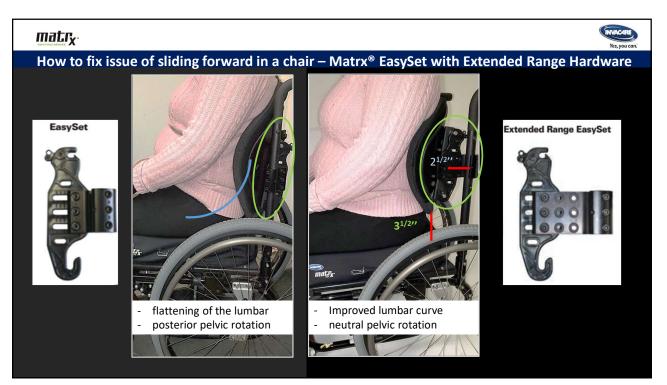


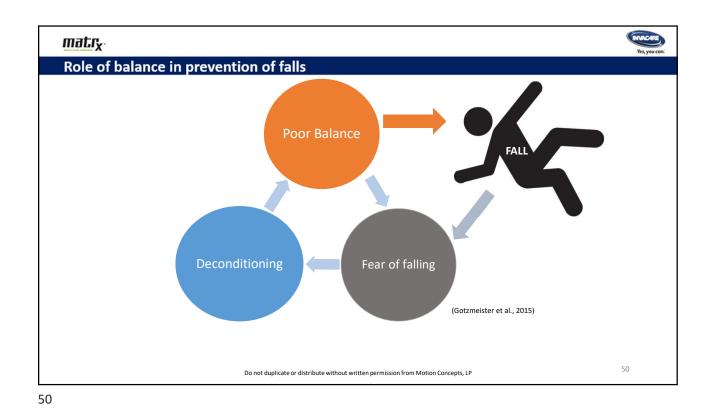


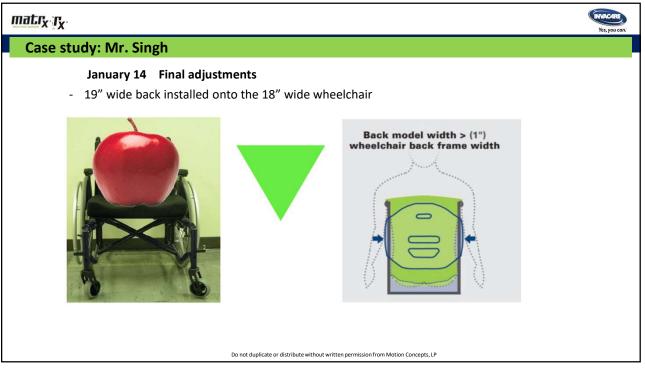




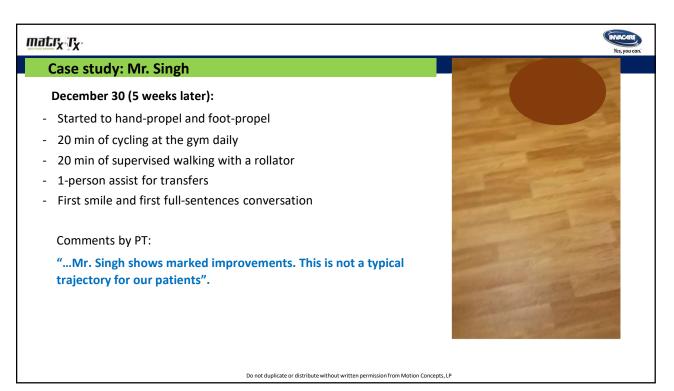


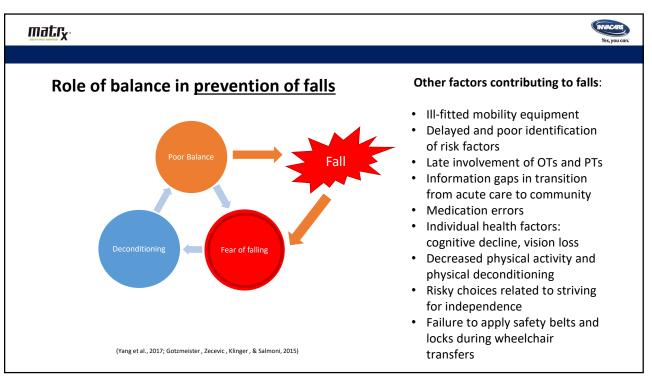


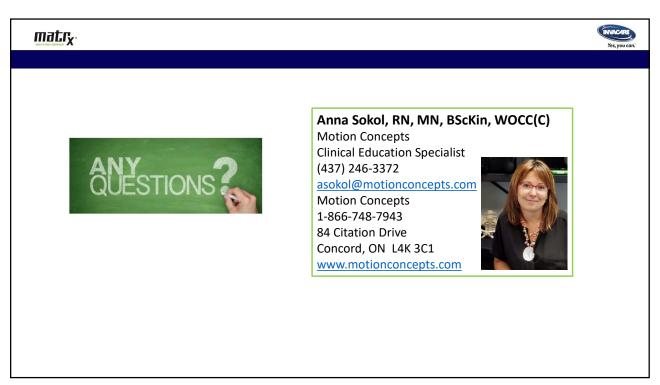



Case study: Mr. Singh Addressing fear of falling • Mr. Singh is 92 years old
Mr. Singh is 92 years old
 5 unexplained falls within 6 months
Refusal to mobilize due to fear of falling
Admitted to the hospital with failure to thrive
 Treated for multiple blood clots in lower limbs, PE, and diabetes.
 After 2 months, d/c to LTC with extreme muscle wasting, frailty, urinary incontinence
Referred to the ADP-prescriber for a wheelchair (2 week wait)
distribute without written permission from Motion Concepts, LP 48
1

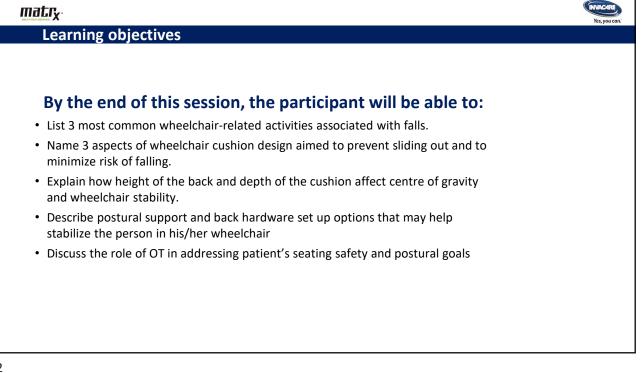
matr _x .T _x .	Yes, you can:
	Case study: Mr. Singh November 21: LTC home provided a loaner lightweight manual chair with rigid contoured back air cushion no seat cushion rigidizer Mr. Singh was sliding forward due to seat-to-floor too high After 1 week of trying, physiotherapy team requested a consult: Mr. Singh was not getting up or propelling the wheelchair Wasn't communicating
Do not duplicate	e or distribute without written permission from Motion Concepts, LP 4-2

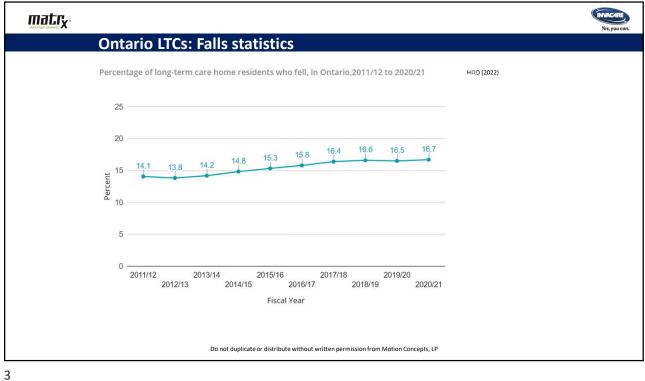

matr_x r_x


Case study: Mr. Singh

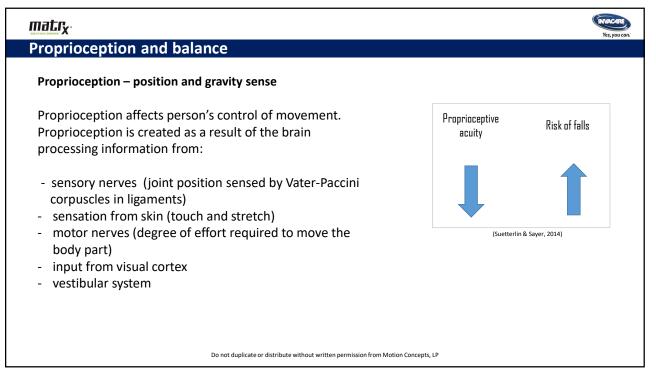

Seating products that worked:

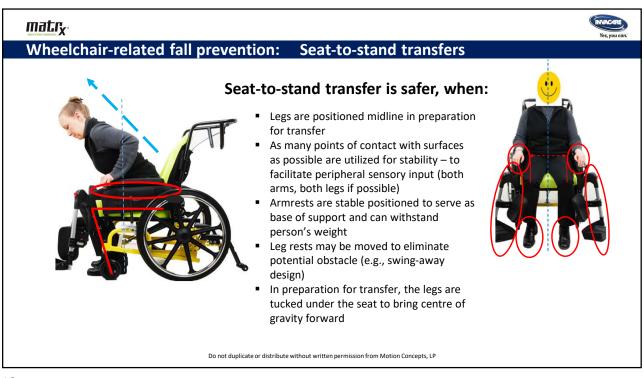
- Proper size (18") w/c frame
- Stable skin protection & positioning cushion (1818)
- Gently contoured back 1" wider than chair frame (1918)
- Head support with adjustable mounting hardware

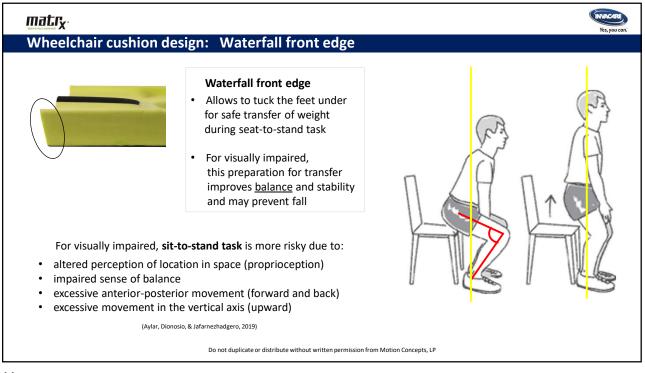


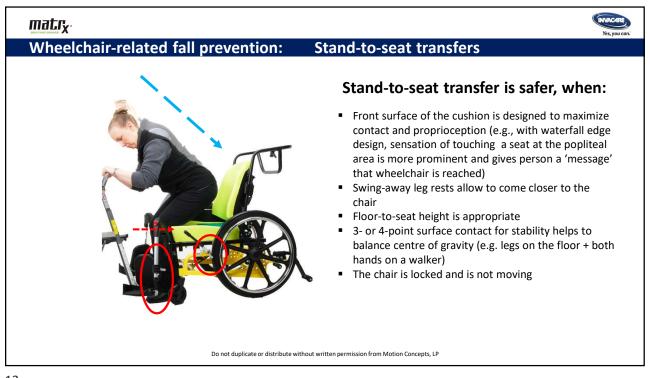


	References:
•	Alssaoui, R., Boucher, C., Bourbonnais, D., Lacoste, M., & Dansereau, J. (2001). Effect of seat cushion on dynamic stability in sitting during a reaching task in wheelchair users with paraplegia. Archives of Physical Medicine ond Rehabilitation, 82, 274-281. doi: 10.1053/apmr.2001.19473
•	Aylar, M. F., Dionosio, V. C. & Jafarnezhadgero, A. A. (2019). Do the centre of mass strategies change with restricted vision during the sit-to stand task? Clinical Biomechanics, 62, 104-112.
•	Erickson, B., Hosseini, M. A., Mudhar, P. S., Soleimani, M., Aboonabi, A., Arzanpour, S., & Sparrey, C. J. (2016). The dynamics of electric powered wheelchair sideways tips and falls: experimental and computational analysis of impact forces and injury. Journal of Neuro Engineering and Rehabilitation, 13(20). doi: 10.1186/s12984-016-0128-7
•	Forslund, E.B., Jorgensen, V., Franzen, E., Opheim, A., et al. (2017). High incidence of falls and fall-related injuries in wheelchair users with spinal cord injury: a prospective study of risk indicators. Journal of Rehabilitation Medicine, 49, 144- 151. doi: 10.2340/16501977-2177
·	Gotzmeister, D., Zecevic, A. A., Klinger, L., & Salmoni, A. (2015). "People are getting lost a little bit": systemic factors that contribute to falls in community-dwelling octogenarians. Canadian Journal of Aging, 34(3), 397-410. doi: 10.1017/S071498081500015X
•	Haibach, P., Slobounov, S., & Newell, K. (2009). Egomotion and vection in young and elderly adults. Gerontology, 55(6), 637–643. https://doi.org/10.1159/000235816
•	HQO (Health Quality Ontario). (2022). Long-Term Care Home Performance: Falls. https://www.hqontario.ca/System-Performance/Long-Term-Care-Home-Performance/Falls
•	HQO (Health Quality Ontario). (2017). Insights into Quality Improvement: Home care Impressions and observations: 2016/2017 Quality Improvement Plans. Retrieved January 6, 2020, from: http://www.hqontario.ca/Portals/0/documents/qi/qip/analysis-home-care-2016-17-en.pdf
•	Jang, E. M., Kim, MH., Yoo, W. G. (2014). Comparison of the tibialis anterior and soleus muscles activities during the sit-to-stand movement with hip adduction and hip abduction in elderly females. Journal of Physical Therapy Science, 26(7), 1045-7. doi: 10.1589/jpts.26.1045
•	Karnath, HO., & Broetz, D. (2003). Understanding and treating "pusher syndrome." Physical Therapy, 83(12), 1119–1125. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=mdc&AN=14640870&site=ehost-live
•	Kirby, R. L., Ackroyd-Stolarz, S. A., Brown, M. G., Kirkland, S. A., & MacLeod, D. A. (1994). Wheelchair-related accidents caused by tips and falls among noninstitutionalized users of manually propelled wheelchairs in Nova Scotia. American Journal Of Physical Medicine & Rehabilitation, 73(5), 819-330.
•	Nishio, R., Yohei, I., Morita Y., Ito, T., Yamazaki, K., & Sakai, Y. (2019). Investigation of the functional decline in proprioceptors for low back pain using the sweep frequency. Applied Science, 9, 4988. doi:10.3390/app9234988
·	Okunribido, O. O. (2013). Patient safety during assistant propelled wheelchair transfers: the effect of the seat cushion on risk of falling. Assistive Technology, 25, 1-8. doi: 10.1080/10400435.2012.680658
•	Suetterlin, K. J. & Sayer, A. A. (2014). Proprioception: where are we now? A commentary in clinical assessment, changes across the life course, functional implications and future interventions. Age Ageing, 43(3), 313-318. doi: 10.1093/ageing/aft174
•	Toosizadeh, N., Ehsani, H., Miramonte, M., & Mohler, J. (2018). Proprioceptive impairments in high fall risk older adults: the effect of mechanical calf vibration on postural balance. Biomedical Engineering Online, 17:51.doi: 10.1186/s12938-018-0482-8
•	Varriano, B., Sulway, S., Wetmore, C., Dillon, W., Misquitta, K., Multani, N., & Rutka, J. (2021). Prevalence of cognitive and vestibular impairments in seniors experiencing falls. Canadian Journal of Neurological Sciences, 48(2), 245 – 252.
•	doi: https://doi.org/10.1017/cjn.2020.154
•	Vermette, MJ., Prince, F., Bherer, L., & Messier, J. (2019). Interaction between proprioceptive sensitivity and the attentional demand for dynamic postural control in sedentary seniors: A pilot study. Neurophysilologie Clinique, 49(6), 423-426. doi: 10.1016/j.neucl.2019.10.047
•	Yang, K. S., van Schooten, J. Sims-Gould, H. A. McKay, F. Feldman, & S. N. Robinovitch. (2017). Sex differences in the circumstances leading to falls: Evidence from real-life falls captured on video in long-term care. Journal of the American Medical Directors Association, 1-6. doi: 10.1016/j.jamda.2017.08.011
•	Yap L. K., Au, S. Y., Ang., Y. H., & Ee C. H. (2003). Nursing home falls: a local perspective. Annals of the Academy of Medicine, Singapore, 32(6), 795 – 800.




Falls captured on video in long-term care (Yang et al., 2017)		
Activity at time of fall	Number of falls (%	
	Men (N=231)	Women (N=298)
Walking	29.2	40.3
Standing	25.0	23.8
Sitting down or lowering	15.9	14.3
Seated or wheeling	15.5	11.5
Getting up or rising	14.4	10.2
Slip	0.9	0.9


E	British Columbia LTC falls study: How do people fall? Falls captured on video in long-term care (N=529) (Yang et al., 2017)			
F				
	Falls while getting up 40% were associated with moving objects and loss of support	t		
-	most often due to	Number of falls suf	fered:	
	incorrect shift of body weight or			
	excessive sway of the trunk	Number of falls	% of participants (N=529	
		1	46 %	
	alls while seated	2	20 %	
r		3	10 % 6 %	
-	most often due to loss of support associated with	5 or more	18%	
	moving object (60%) or	5 of more	10 /0	
	sliding out of a chair (40%)			



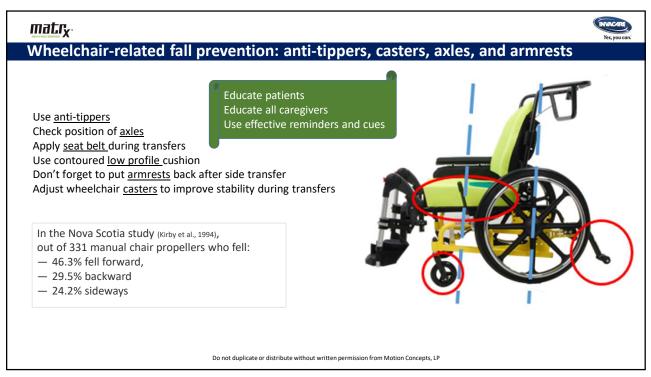
Proprioception: Why is incorrect shift of body weight so common in seniors?			
Proprioception is <u>worsened</u> with:	Proprioception is <i>improved</i> with:		
 Aging (changes in muscles and nerves) Visual changes Surgical interventions in joints Arthritis or other pathological changes Injections into the joints Neuropathy Prolonged vibration Immediately after intensive exercise Spatial neglect or 'pusher syndrome' (changes in processing visual input after CVA/strokes) Low back pain 	 Improvements in vision Regular balance training on unstable surface Short-term vibration Sensation of touching a surface/object 3-point or 4-point surface contact (e.g. back of the legs + both hands on armrests) Balanced posture of the trunk 		
 Low back pain (reliance on trunk proprioception with decline of proprioception in legs) Simultaneous demand for cognitive attention to dynamic postural control 	(Haibach, Slobounov, & Newell, 2009; Karnath & Broetz, 2003; Nishio et al., 2019; Toosizadeh, Ehsani, Miramonte, & Mohler, 2018; Vermette et al., 2019)		

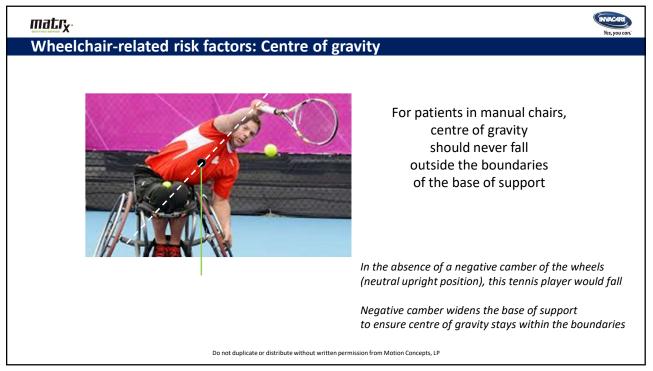
Falling while being seated or wheeled: sliding out of the wheelchair Posture – related? Wheelchair – related? Wheelchair seating - related? Image: Comparison of the seating - related?

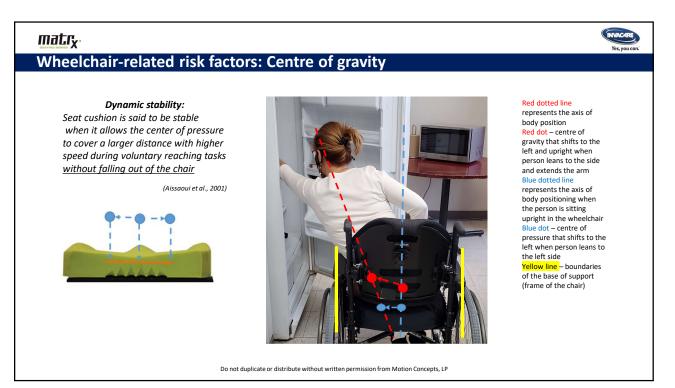
Or all the above?

matrx

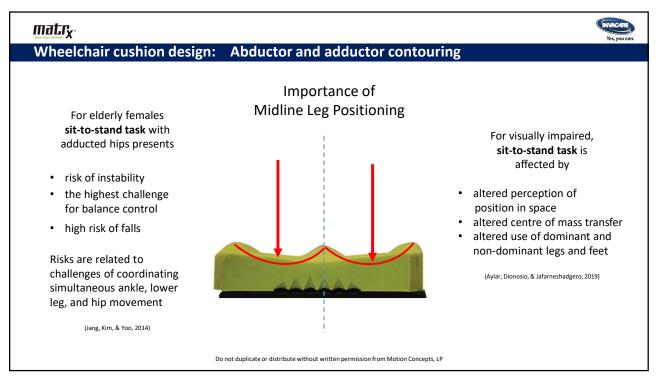
- 1. Assess patient (mat assessment)
- Assess the wheelchair
 Start from the seat, then look at the back, then the
- rest of the wheelchair system
 Change one thing a time and assess postural changes

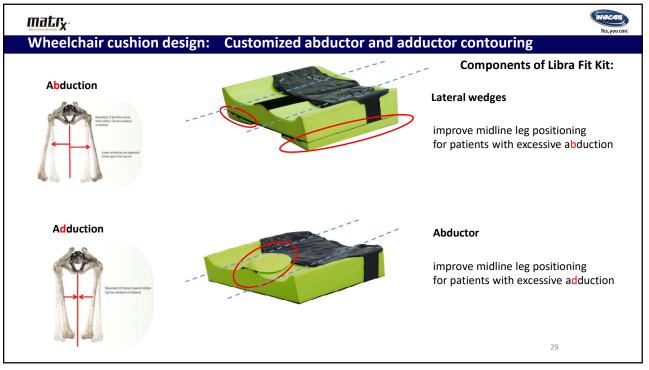


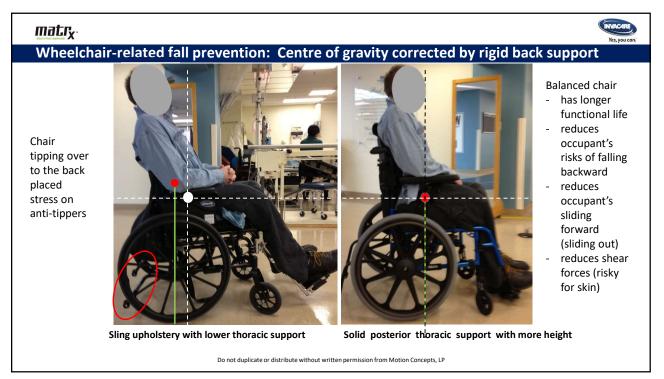


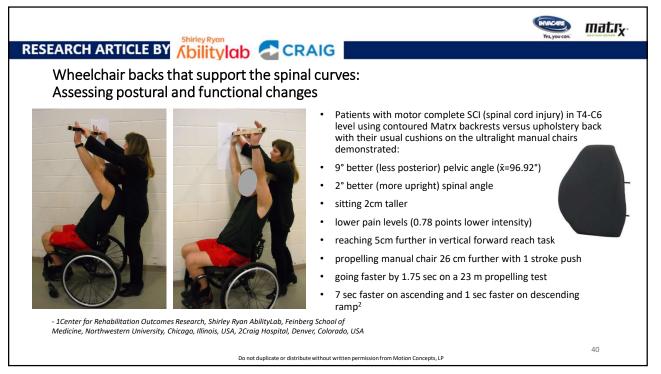


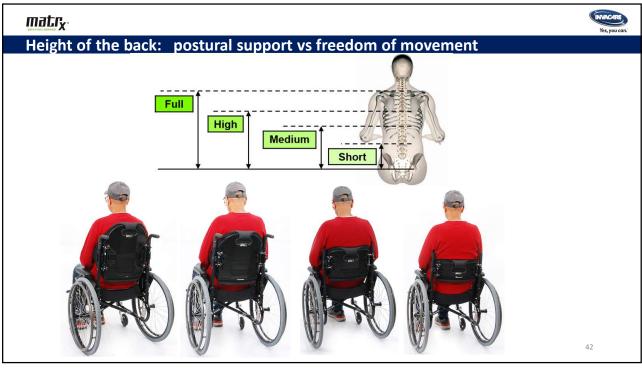


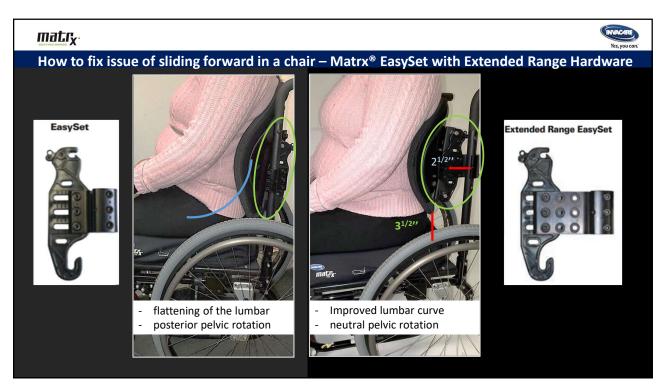


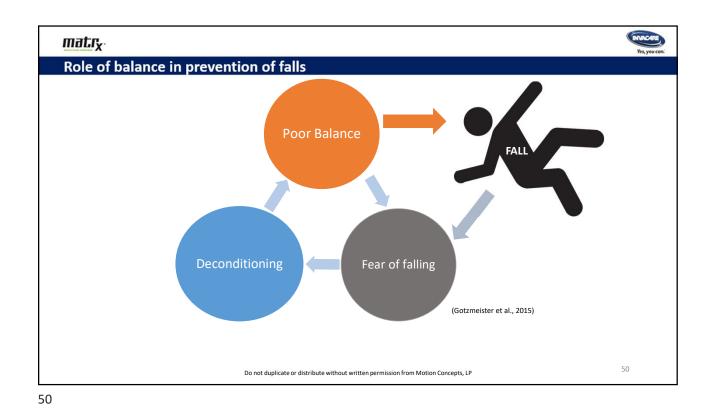


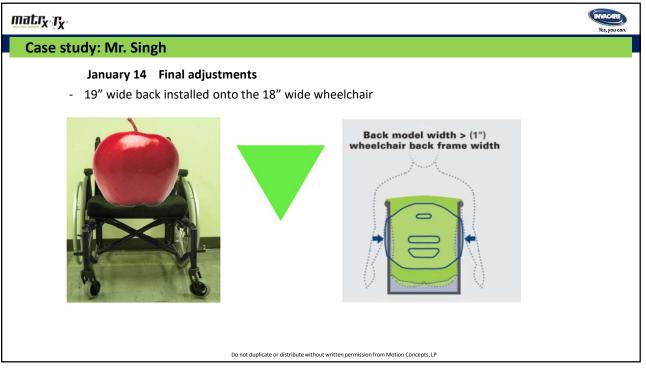




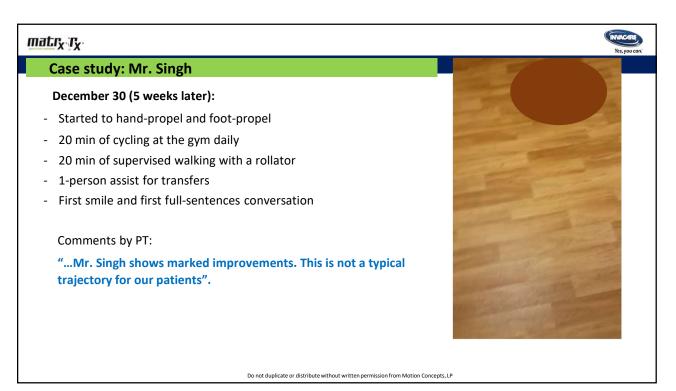


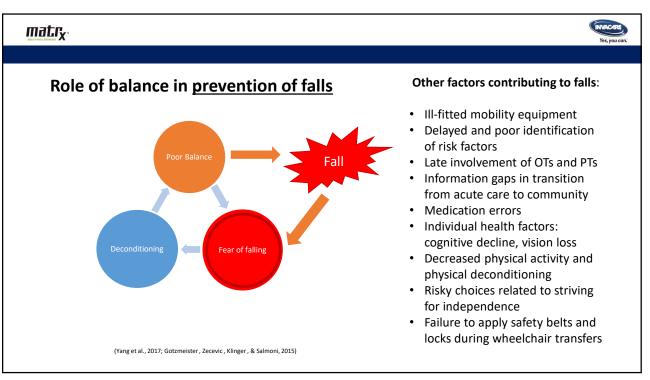


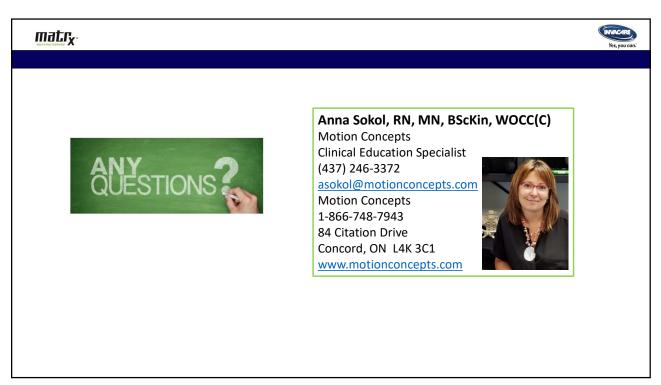



	Yes, you co
	Case study: Mr. Singh
	Addressing fear of falling
	Mr. Singh is 92 years old
	5 unexplained falls within 6 months
	Refusal to mobilize due to fear of falling
	Admitted to the hospital with failure to thrive
	Treated for multiple blood clots in lower limbs, PE, and diabetes.
	After 2 months, d/c to LTC with extreme muscle wasting, frailty, urinary incontinence
	Referred to the ADP-prescriber for a wheelchair (2 week wait)
Do not du	plicate or distribute without written permission from Motion Concepts, LP 48

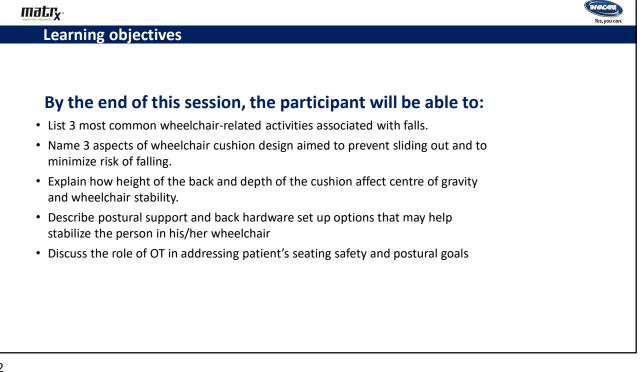
matr _x . I _X .	Yes, you can:
	Case study: Mr. Singh November 21: LTC home provided a loaner lightweight manual chair with rigid contoured back air cushion no seat cushion rigidizer Mr. Singh was sliding forward due to seat-to-floor too high
	After 1 week of trying, physiotherapy team requested a consult: - Mr. Singh was not getting up or propelling the wheelchair - wasn't communicating
Do not duplica	te or distribute without written permission from Motion Concepts, LP 49

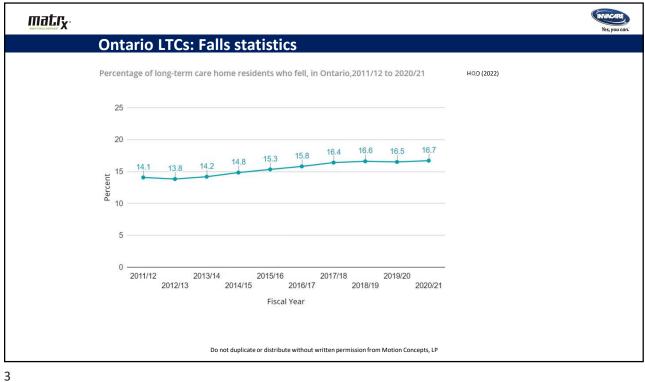

matr_x r_x


Case study: Mr. Singh

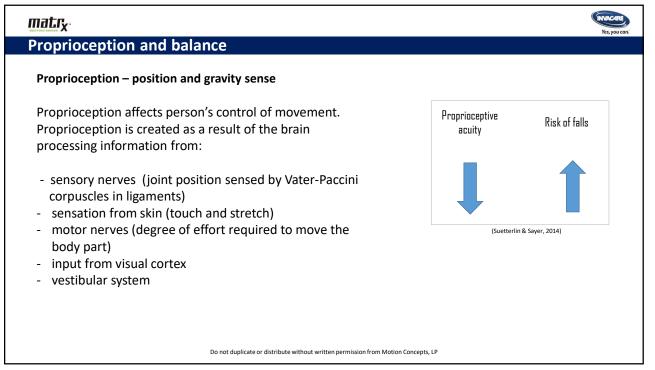

Seating products that worked:

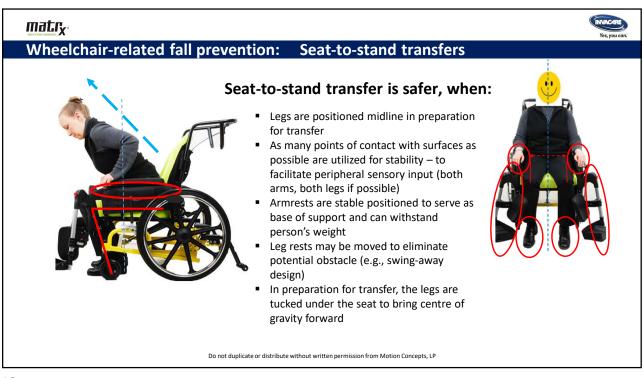
- Proper size (18") w/c frame
- Stable skin protection & positioning cushion (1818)
- Gently contoured back 1" wider than chair frame (1918)
- Head support with adjustable mounting hardware

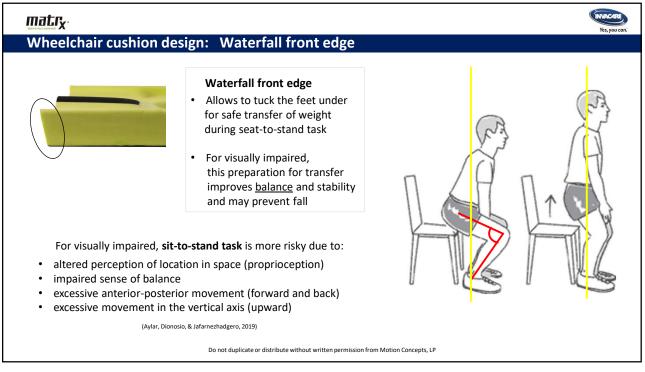


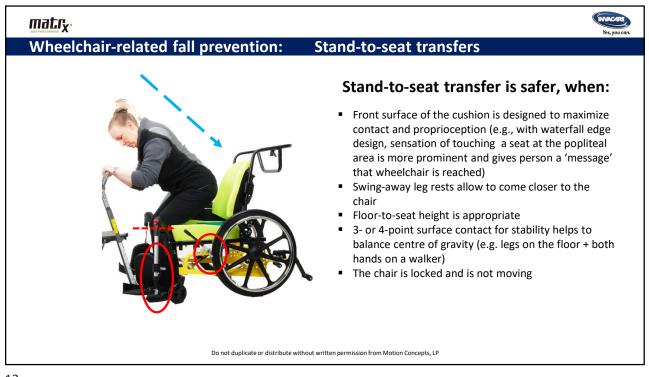


matrx	Yes, you can:
References:	
 Aissaoui, R., Boucher, C., Bourbonnais, D., Lacoste, M., & Dansereau, J. (2001). Effect of seat cushion on dynamic stability in sitting during a reaching task in wheelchair users with paraplegia. Archives of Physical M 82, 274-281. doi: 10.1053/apmr.2001.19473 	ledicine and Rehabilitation,
• Aylar, M. F., Dionosio, V. C. & Jafarnezhadgero, A. A. (2019). Do the centre of mass strategies change with restricted vision during the sit-to stand task? Clinical Biomechanics, 62, 104-112.	
 Erickson, B., Hosseini, M. A., Mudhar, P. S., Soleimani, M., Aboonabi, A., Arzanpour, S., & Sparrey, C. J. (2016). The dynamics of electric powered wheelchair sideways tips and falls: experimental and computationa and injury. Journal of Neuro Engineering and Rehabilitation, 13(20). doi: 10.1186/s12984-016-0128-7 	al analysis of impact forces
 Forslund, E.B., Jorgensen, V., Franzen, E., Opheim, A., et al. (2017). High incidence of falls and fall-related injuries in wheelchair users with spinal cord injury: a prospective study of risk indicators. Journal of Rehabi 151. doi: 10.2340/16501977-2177 	litation Medicine, 49, 144-
 Gotzmeister, D., Zecevic, A. A., Klinger, L., & Salmoni, A. (2015). "People are getting lost a little bit": systemic factors that contribute to falls in community-dwelling octogenarians. Canadian Journal of Aging, 34(3), 10.1017/S071498081500015X 	397-410. doi:
 Haibach, P., Slobounov, S., & Newell, K. (2009). Egomotion and vection in young and elderly adults. Gerontology, 55(6), 637–643. https://doi.org/10.1159/000235816 	
HQO (Health Quality Ontario). (2022). Long-Term Care Home Performance: Falls. https://www.hqontario.ca/System-Performance/Long-Term-Care-Home-Performance/Falls	
 HQO (Health Quality Ontario). (2017). Insights into Quality Improvement: Home care Impressions and observations: 2016/2017 Quality Improvement Plans. Retrieved January 6, 2020, from: http://www.hqontario.ca/Portals/0/documents/qi/qip/analysis-home-care-2016-17-en.pdf 	
 Jang, E. M., Kim, MH., Yoo, W. G. (2014). Comparison of the tibialis anterior and soleus muscles activities during the sit-to-stand movement with hip adduction and hip abduction in elderly females. Journal of Phy 1045-7. doi: 10.1589/jpts.26.1045 	sical Therapy Science, 26(7),
• Karnath, HO., & Broetz, D. (2003). Understanding and treating "pusher syndrome." Physical Therapy, 83(12), 1119–1125. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=mdc&AN=1464	0870&site=ehost-live
 Kirby, R. L., Ackroyd-Stolarz, S. A., Brown, M. G., Kirkland, S. A., & MacLeod, D. A. (1994). Wheelchair-related accidents caused by tips and falls among noninstitutionalized users of manually propelled wheelchairs i Journal Of Physical Medicine & Rehabilitation, 73(5), 319-330. 	in Nova Scotia. American
• Nishio, R., Yohei, I., Morita Y., Ito, T., Yamazaki, K., & Sakai, Y. (2019). Investigation of the functional decline in proprioceptors for low back pain using the sweep frequency. Applied Science, 9, 4988. doi:10.3390/ap	p9234988
Okunribido, O. O. (2013). Patient safety during assistant propelled wheelchair transfers: the effect of the seat cushion on risk of falling. Assistive Technology, 25, 1-8. doi: 10.1080/10400435.2012.680658	
 Suetterlin, K. J. & Sayer, A. A. (2014). Proprioception: where are we now? A commentary in clinical assessment, changes across the life course, functional implications and future interventions. Age Ageing, 43(3), 3 10.1093/ageing/aft174 	13-318. doi:
 Toosizadeh, N., Ehsani, H., Miramonte, M., & Mohler, J. (2018). Proprioceptive impairments in high fall risk older adults: the effect of mechanical calf vibration on postural balance. Biomedical Engineering Online, 3 018-0482-8 	17:51.doi: 10.1186/s12938-
• Varriano, B., Sulway, S., Wetmore, C., Dillon, W., Misquitta, K., Multani, N., & Rutka, J. (2021). Prevalence of cognitive and vestibular impairments in seniors experiencing fails. Canadian Journal of Neurological S	ciences , 48(2), 245 – 252.
doi: https://doi.org/10.1017/cjn.2020.154	
 Vermette, MJ., Prince, F., Bherer, L., & Messier, J. (2019). Interaction between proprioceptive sensitivity and the attentional demand for dynamic postural control in sedentary seniors: A pilot study. Neurophysilo 426. doi: 10.1016/j.neucl.2019.10.047 	ologie Clinique, 49(6), 423-
 Yang, K. S., van Schooten, J. Sims-Gould, H. A. McKay, F. Feldman, & S. N. Robinovitch. (2017). Sex differences in the circumstances leading to falls: Evidence from real-life falls captured on video in long-term care Medical Directors Association, 1-6. doi: 10.1016/j.jamda.2017.08.011 	Journal of the American
 Yap L. K., Au, S. Y., Ang., Y. H., & Ee C. H. (2003). Nursing home falls: a local perspective. Annals of the Academy of Medicine, Singapore, 32(6), 795 – 800. 	




Activity at time of fallNumber of falls (%)Men (N=231)Women (N=231)Walking29.240.3
Walking 29.2 40.3
Standing 25.0 23.8
Sitting down or lowering 15.9 14.3
Seated or wheeling 15.5 11.5
Getting up or rising 14.4 10.2
Slip 0.9 0.9


British Columbia LTC falls study: How do pe	ople fall?				
Falls captured on video in long-term care (N=529) (Yang et al., 2017)					
 Falls while getting up 40% were associated with moving objects and loss of suppor most often due to 	rt Number of falls suf	fered:			
incorrect shift of body weight or					
excessive sway of the trunk	Number of falls	% of participants (N=529			
	1	46 %			
	2	20 %			
Falls while seated	3	10 %			
 most often due to loss of support associated with 	4	6%			
moving object (60%) or	5 or more	18 %			
sliding out of a chair (40%)					



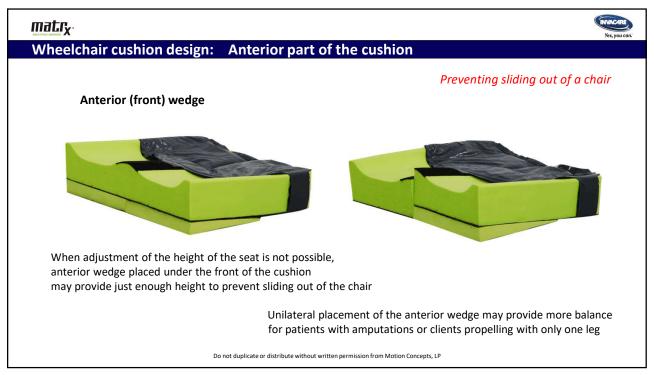
roprioception: Why is incorrect shift of body weight so common in seniors?			
Proprioception is <u>worsened</u> with:	Proprioception is <i>improved</i> with:		
 Aging (changes in muscles and nerves) Visual changes Surgical interventions in joints Arthritis or other pathological changes Injections into the joints Neuropathy Prolonged vibration Immediately after intensive exercise Spatial neglect or 'pusher syndrome' (changes in processing visual input after CVA/strokes) Iow back pain 	 Improvements in vision Regular balance training on unstable surface Short-term vibration Sensation of touching a surface/object 3-point or 4-point surface contact (e.g. back of the legs + both hands on armrests) Balanced posture of the trunk 		
 Low back pain (reliance on trunk proprioception with decline of proprioception in legs) Simultaneous demand for cognitive attention to dynamic postural control 	(Haibach, Slobounov, & Newell, 2009; Karnath & Broetz, 2003; Nishio et al., 2019; Toosizadeh, Ehsani, Miramonte, & Mohler, 2018; Vermette et al., 2019)		

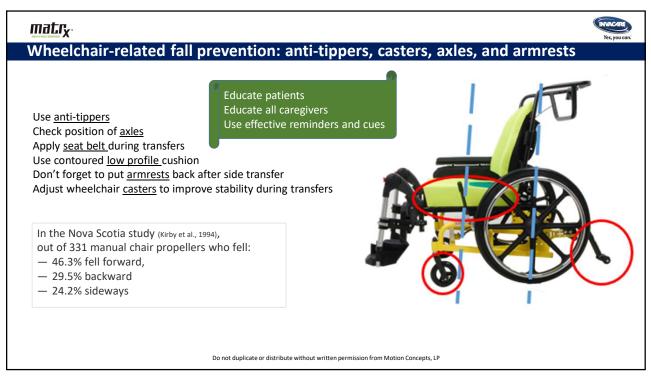
Falling while being seated or wheeled: sliding out of the wheelchair Posture – related? Wheelchair – related? Wheelchair seating - related? Image: Comparison of the wheelchair

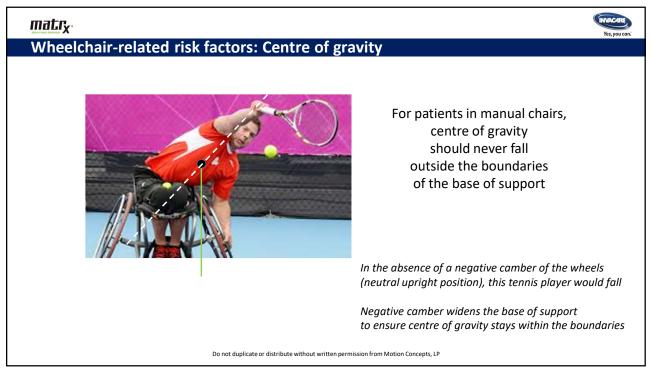
Or all the above?

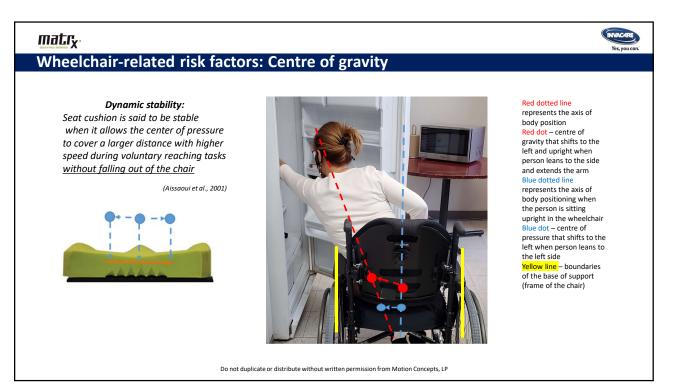
matrx

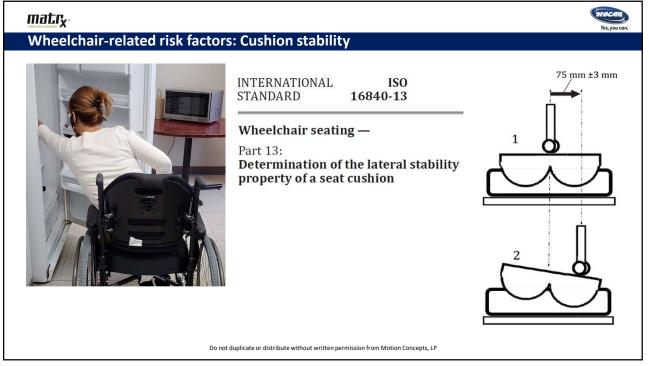
- 1. Assess patient (mat assessment)
- Assess the wheelchair
 Start from the seat, then look at the back, then the rest of the wheelchair system
- Change one thing a time and assess postural changes

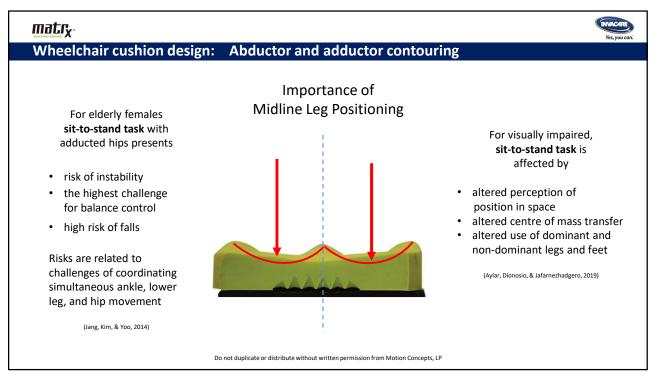


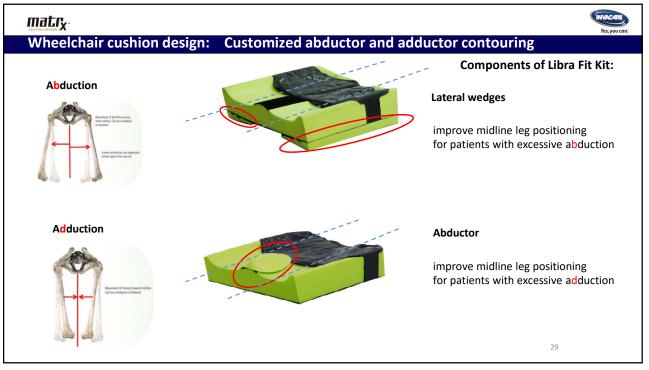


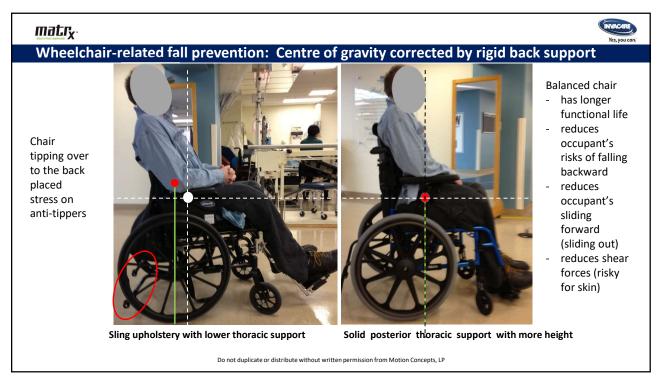


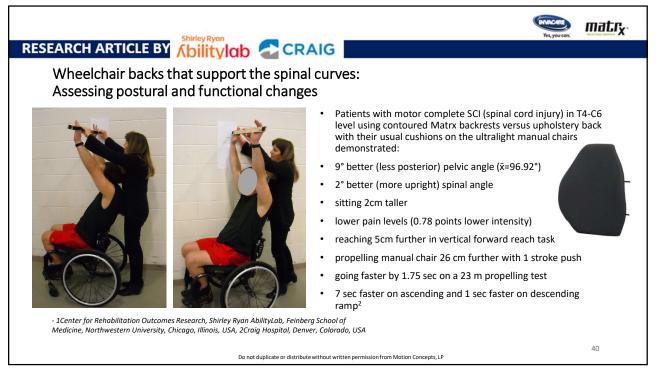


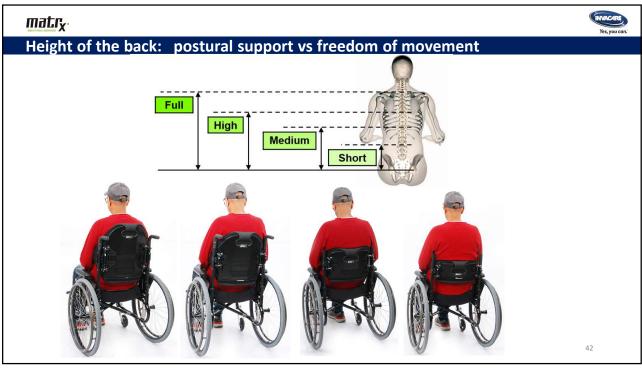


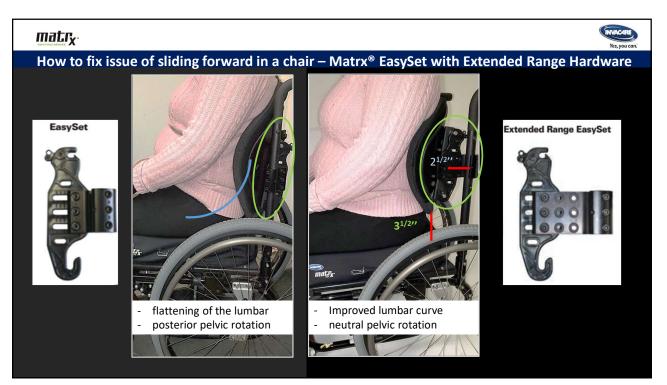


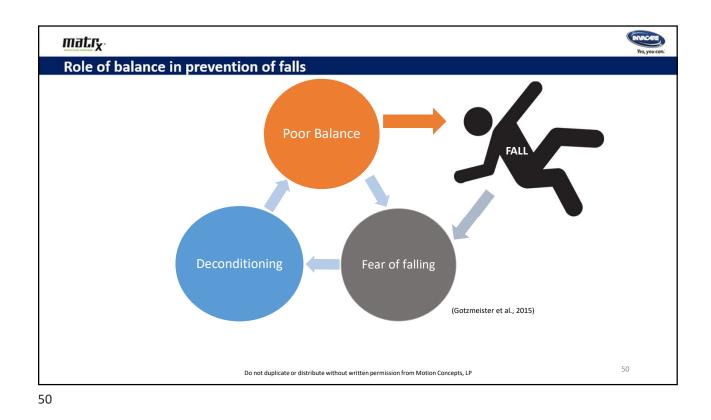




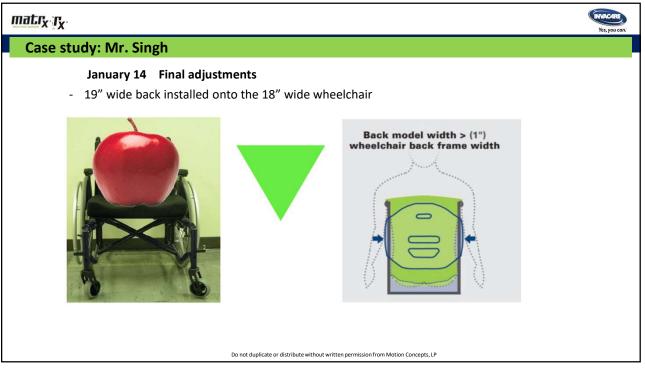




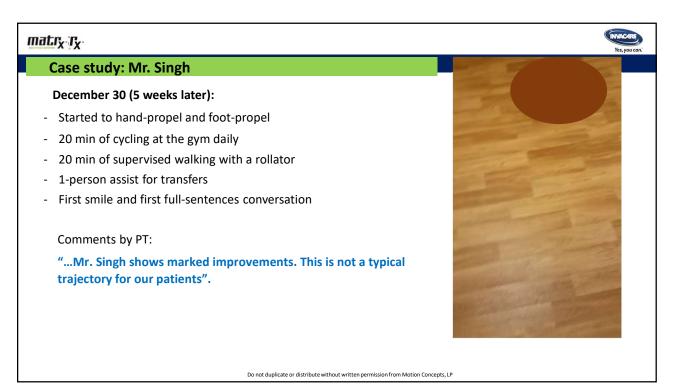


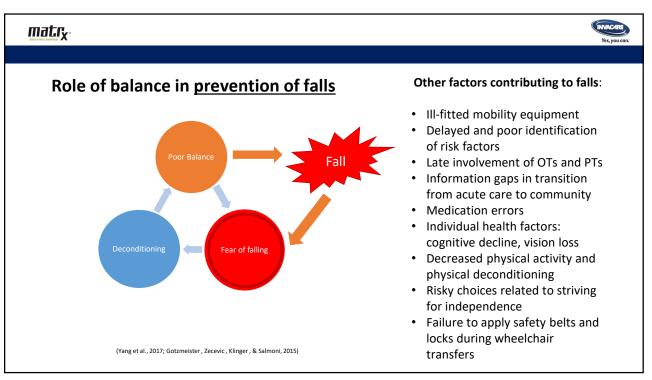


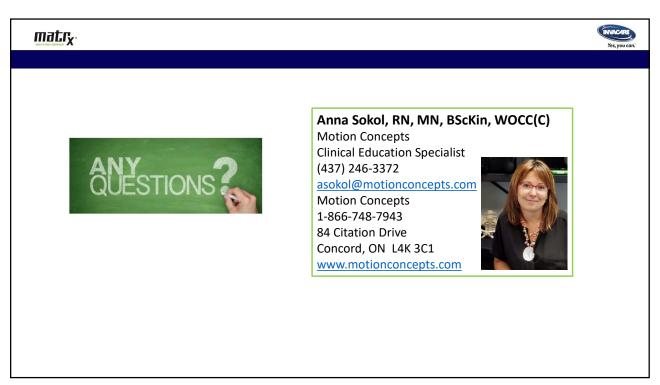
matr _x . r _x .	Ver, you can:
	Case study: Mr. Singh
	Addressing fear of falling
	Mr. Singh is 92 years old
	5 unexplained falls within 6 months
	Refusal to mobilize due to fear of falling
	Admitted to the hospital with failure to thrive
	 Treated for multiple blood clots in lower limbs, PE, and diabetes.
	 After 2 months, d/c to LTC with extreme muscle wasting, frailty, urinary incontinence
	Referred to the ADP-prescriber for a wheelchair (2 week wait)
Do not duplicate or	distribute without written permission from Motion Concepts, LP 48
3	


4	8

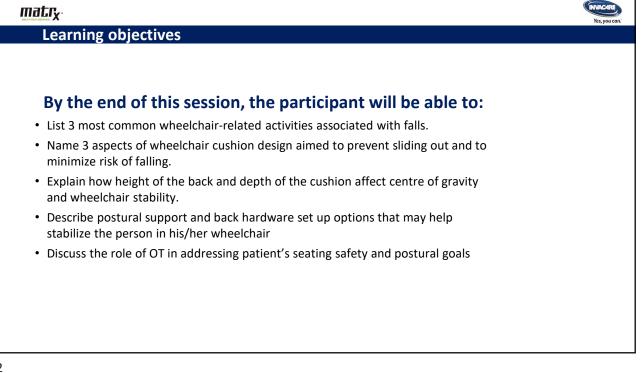
matr _x r _x	Yes, you can:
	Case study: Mr. Singh
	 November 21: LTC home provided a loaner lightweight manual chair with rigid contoured back air cushion no seat cushion rigidizer Mr. Singh was sliding forward due to seat-to-floor too high
	 After 1 week of trying, physiotherapy team requested a consult: Mr. Singh was not getting up or propelling the wheelchair wasn't communicating
Do not duplicat	e or distribute without written permission from Motion Concepts, LP 49

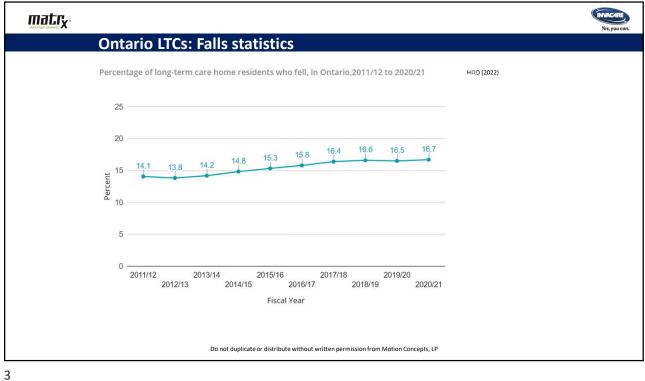

matr_x r_x


Case study: Mr. Singh

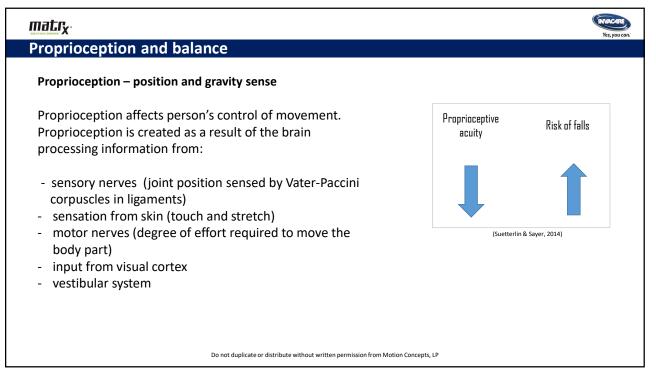

Seating products that worked:

- Proper size (18") w/c frame
- Stable skin protection & positioning cushion (1818)
- Gently contoured back 1" wider than chair frame (1918)
- Head support with adjustable mounting hardware

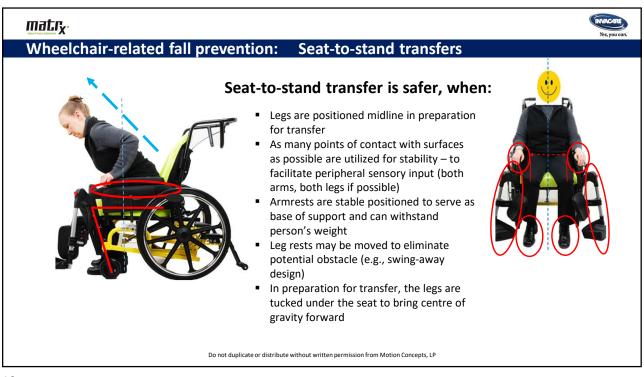


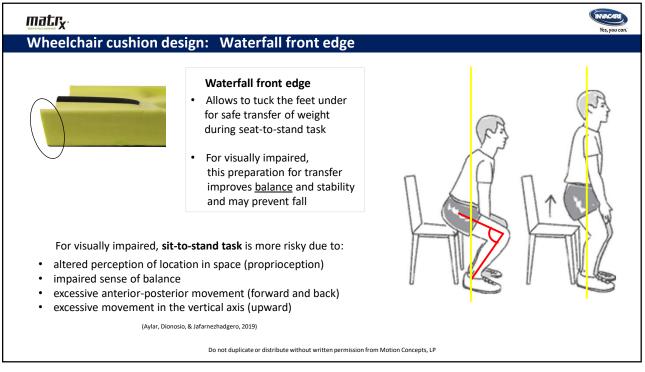


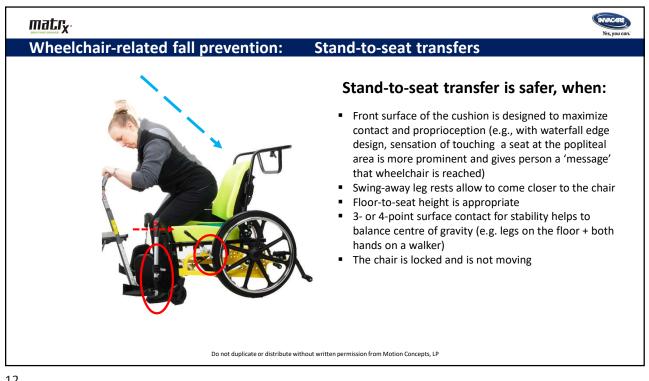
	References:
•	Aissaoul, R., Boucher, C., Bourbonnais, D., Lacoste, M., & Dansereau, J. (2001). Effect of seat cushion on dynamic stability in sitting during a reaching task in wheelchair users with paraplegia. Archives of Physical Medicine and Rehabilitation, 82, 274-281. doi: 10.1053/apmr.2001.19473
•	Aylar, M. F., Dionosio, V. C. & Jafarnezhadgero, A. A. (2019). Do the centre of mass strategies change with restricted vision during the sit-to stand task? Clinical Biomechanics, 62, 104-112.
•	Erickson, B., Hosseini, M. A., Mudhar, P. S., Soleimani, M., Aboonabi, A., Arzanpour, S., & Sparrey, C. J. (2016). The dynamics of electric powered wheelchair sideways tips and falls: experimental and computational analysis of impact forces and injury. Journal of Neuro Engineering and Rehabilitation, 13(20). doi: 10.1186/s12984-016-0128-7
•	Forslund, E.B., Jorgensen, V., Franzen, E., Opheim, A., et al. (2017). High incidence of falls and fall-related injuries in wheelchair users with spinal cord injury: a prospective study of risk indicators. Journal of Rehabilitation Medicine, 49, 144- 151. doi: 10.2340/16501977-2177
•	Gotzmeister, D., Zecevic, A. A., Klinger, L., & Salmoni, A. (2015). "People are getting lost a little bit": systemic factors that contribute to fails in community-dwelling octogenarians. Canadian Journal of Aging, 34(3), 397-410. doi: 10.1017/S071498081500015X
•	Haibach, P., Slobounov, S., & Newell, K. (2009). Egomotion and vection in young and elderly adults. Gerontology, 55(6), 637–643. https://doi.org/10.1159/000235816
•	HQO (Health Quality Ontario). (2022). Long-Term Care Home Performance: Falls. https://www.hqontario.ca/System-Performance/Long-Term-Care-Home-Performance/Falls
•	HQO (Health Quality Ontario). (2017). Insights into Quality Improvement: Home care Impressions and observations: 2016/2017 Quality Improvement Plans. Retrieved January 6, 2020, from: http://www.hqontario.ca/Portals/0/documents/qi/qip/analysis-home-care-2016-17-en.pdf
•	Jang, E. M., Kim, MH., Yoo, W. G. (2014). Comparison of the tibialis anterior and soleus muscles activities during the sit-to-stand movement with hip adduction and hip abduction in elderly females. Journal of Physical Therapy Science, 26(7), 1045-7. doi: 10.1589/jpts.26.1045
•	Karnath, HO., & Broetz, D. (2003). Understanding and treating "pusher syndrome." Physical Therapy, 83(12), 1119–1125. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=mdc&AN=14640870&site=ehost-live
•	Kirby, R. L., Ackroyd-Stolarz, S. A., Brown, M. G., Kirkland, S. A., & MacLeod, D. A. (1994). Wheelchair-related accidents caused by tips and falls among noninstitutionalized users of manually propelled wheelchairs in Nova Scotia. American Journal Of Physical Medicine & Rehabilitation, 73(5), 319-330.
·	Nishio, R., Yohei, I., Morita Y., Ito, T., Yamazaki, K., & Sakai, Y. (2019). Investigation of the functional decline in proprioceptors for low back pain using the sweep frequency. Applied Science, 9, 4988. doi:10.3390/app9234988
•	Okunribido, O. O. (2013). Patient safety during assistant propelled wheelchair transfers: the effect of the seat cushion on risk of falling. Assistive Technology, 25, 1-8. doi: 10.1080/10400435.2012.680658
•	Suetterlin, K. J. & Sayer, A. A. (2014). Proprioception: where are we now? A commentary in clinical assessment, changes across the life course, functional implications and future interventions. Age Ageing, 43(3), 313-318. doi: 10.1093/ageing/aft174
•	Toosizadeh, N., Ehsani, H., Miramonte, M., & Mohler, J. (2018). Proprioceptive impairments in high fall risk older adults: the effect of mechanical calf vibration on postural balance. Biomedical Engineering Online, 17:51.doi: 10.1186/s12938-018-0482-8
•	Varriano, B., Sulway, S., Wetmore, C., Dillon, W., Misquitta, K., Multani, N., & Rutka, J. (2021). Prevalence of cognitive and vestibular impairments in seniors experiencing fails. Conadian Journal of Neurological Sciences , 48(2), 245 – 252.
·	doi: https://doi.org/10.1017/cjn.2020.154
•	Vermette, MJ., Prince, F., Bherer, L., & Messier, J. (2019). Interaction between proprioceptive sensitivity and the attentional demand for dynamic postural control in sedentary seniors: A pilot study. Neurophysilologie Clinique, 49(6), 423- 426. doi: 10.1016/j.neucl.2019.10.047
·	Yang, K. S., van Schooten, J. Sims-Gould, H. A. McKay, F. Feldman, & S. N. Robinovitch. (2017). Sex differences in the circumstances leading to falls: Evidence from real-life falls captured on video in long-term care. Journal of the American Medical Directors Association, 1-6. doi: 10.1016/j.jamda.2017.08.011
·	Yap L. K., Au, S. Y., Ang., Y. H., & Ee C. H. (2003). Nursing home falls: a local perspective. Annals of the Academy of Medicine, Singapore, 32(6), 795 – 800.



Falls captured on video in long-term care (Yang et al., 2017)		
Activity at time of fall	Number of falls (%	
	Men (N=231)	Women (N=298)
Walking	29.2	40.3
Standing	25.0	23.8
Sitting down or lowering	15.9	14.3
Seated or wheeling	15.5	11.5
Getting up or rising	14.4	10.2
Slip	0.9	0.9


E	British Columbia LTC falls study: How do pe	ople fall?			
F	Falls captured on video in long-term care (N=529) (Yang et al., 2017)				
	Falls while getting up 40% were associated with moving objects and loss of support	t			
-	most often due to	Number of falls suf	fered:		
	incorrect shift of body weight or				
	excessive sway of the trunk	Number of falls	% of participants (N=529		
		1	46 %		
	alls while seated	2	20 %		
r		3	10 % 6 %		
-	most often due to loss of support associated with	5 or more	18 %		
	moving object (60%) or	5 of more	10 /0		
	sliding out of a chair (40%)				




Proprioception: Why is incorrect shift of body weight so common in seniors?			
Proprioception is <u>worsened</u> with:	Proprioception is <i>improved</i> with:		
 Aging (changes in muscles and nerves) Visual changes Surgical interventions in joints Arthritis or other pathological changes Injections into the joints Neuropathy Prolonged vibration Immediately after intensive exercise Spatial neglect or 'pusher syndrome' (changes in processing visual input after CVA/strokes) 	 Improvements in vision Regular balance training on unstable surface Short-term vibration Sensation of touching a surface/object 3-point or 4-point surface contact (e.g. back of the legs + both hands on armrests) Balanced posture of the trunk 		
 Low back pain (reliance on trunk proprioception with decline of proprioception in legs) Simultaneous demand for cognitive attention to dynamic postural control 	(Haibach, Slobounov, & Newell, 2009; Karnath & Broetz, 2003; Nishio et al., 2019; Toosizadeh, Ehsani, Miramonte, & Mohler, 2018; Vermette et al., 2019)		

Falling while being seated or wheeled: sliding out of the wheelchair Posture – related? Wheelchair – related?

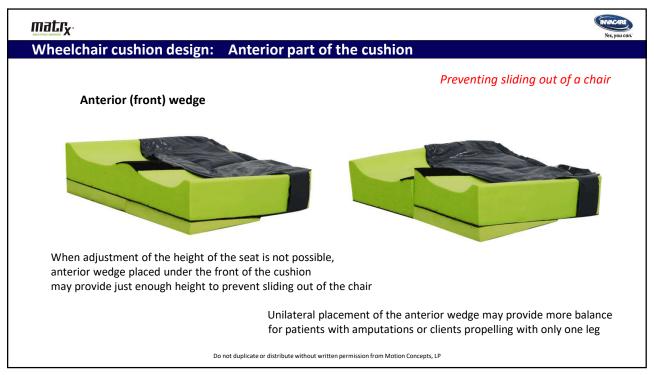
Or all the above?

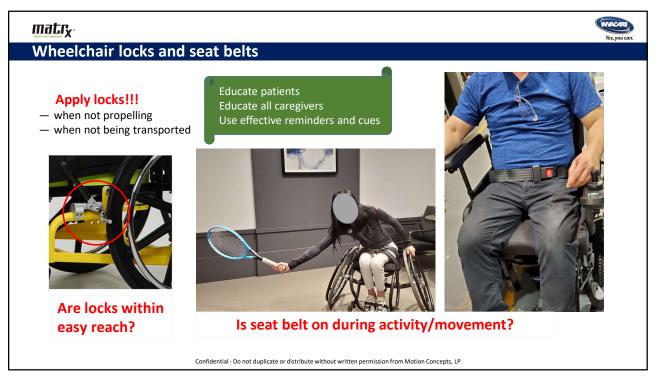
matrx

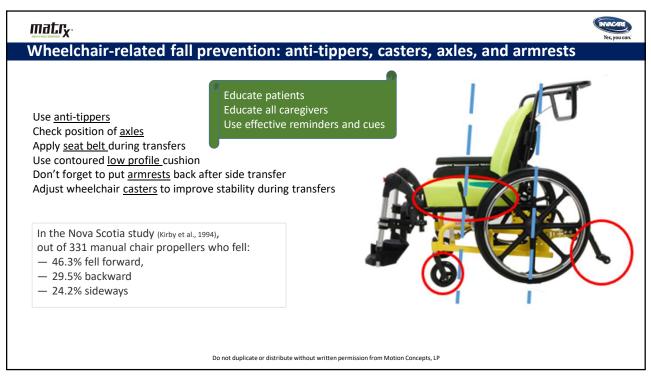
- 1. Assess patient (mat assessment)
- Assess the wheelchair
 Start from the seat, then look at the back, then the rest of the wheelchair system

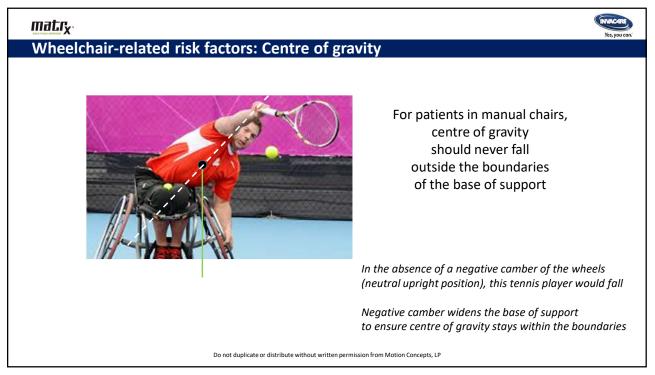
Wheelchair seating - related?

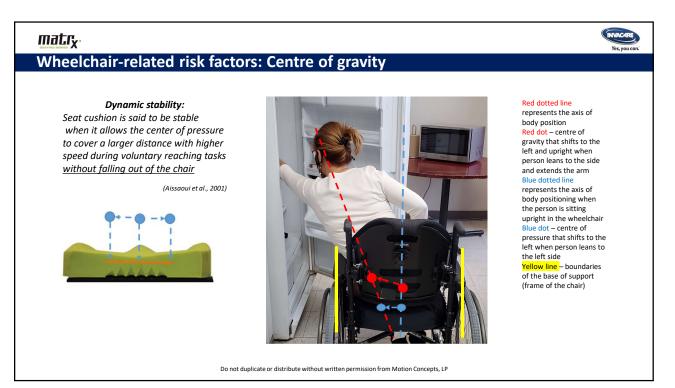
- Change one thing a time and assess postural changes



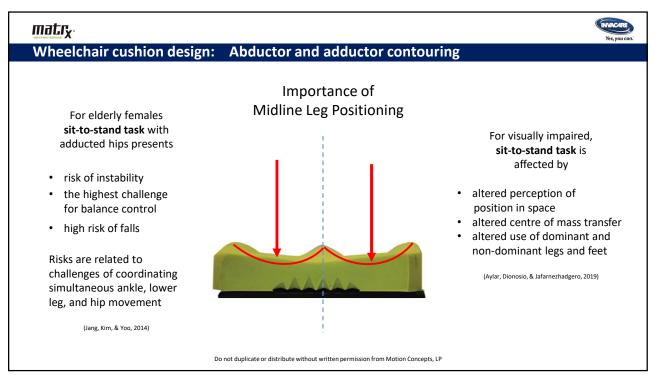


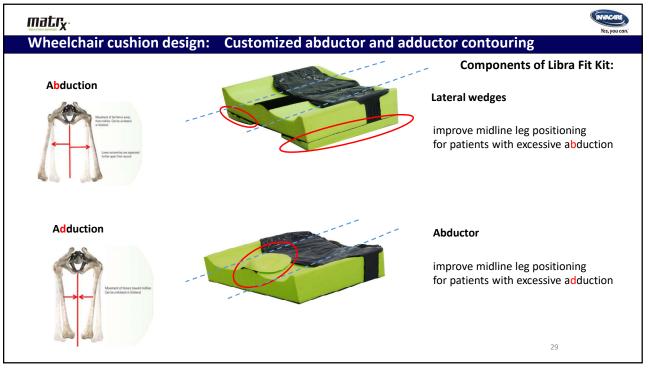


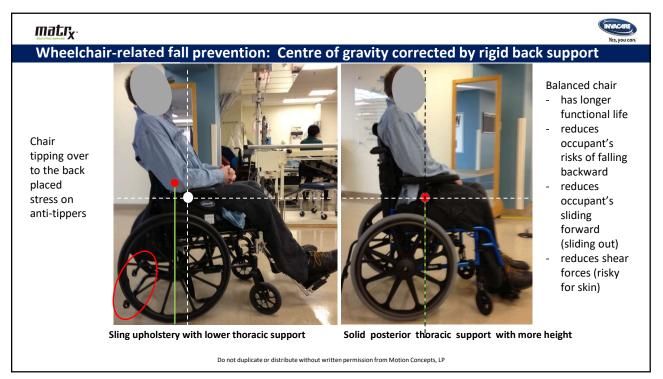


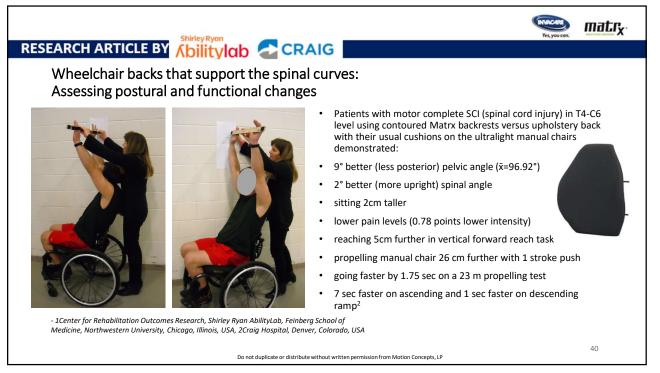


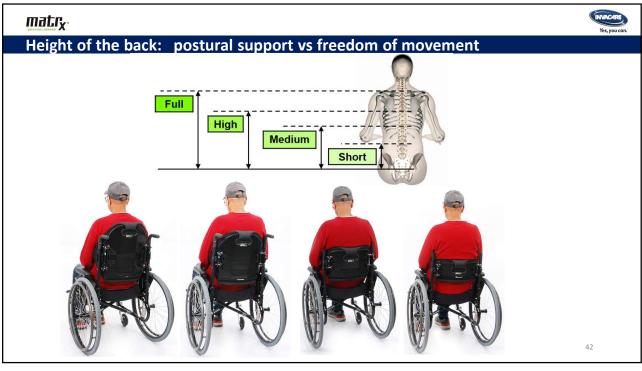


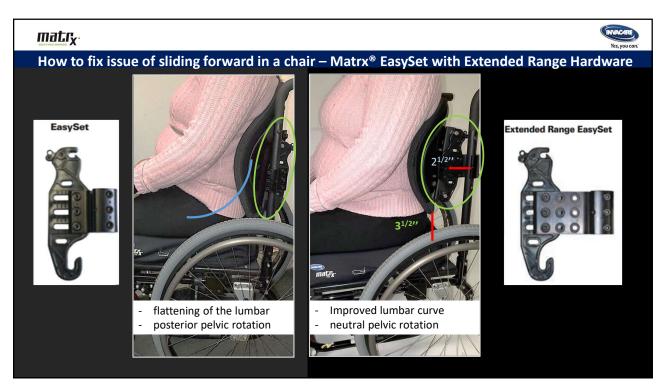


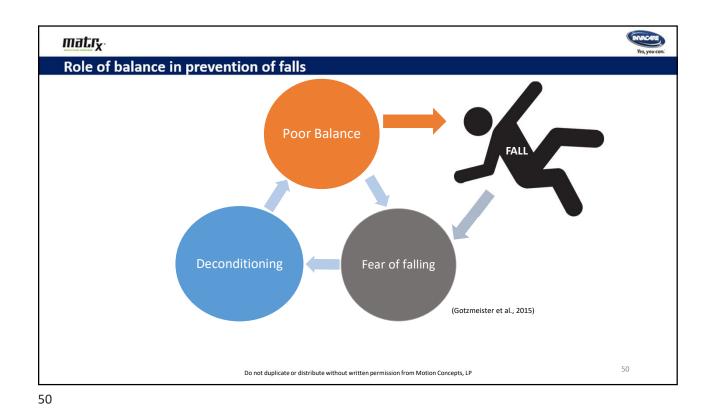


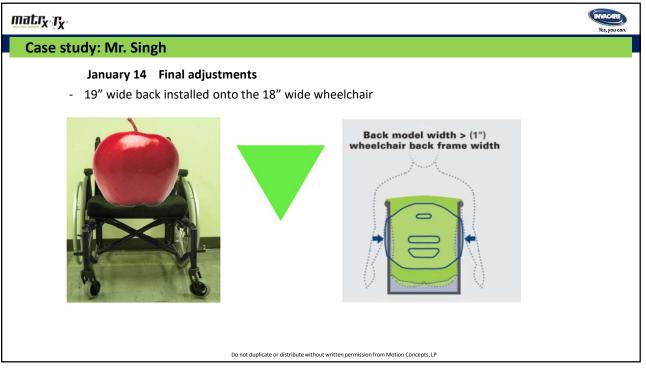




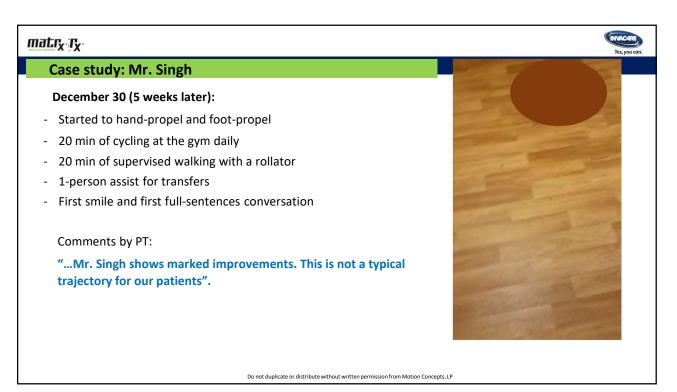


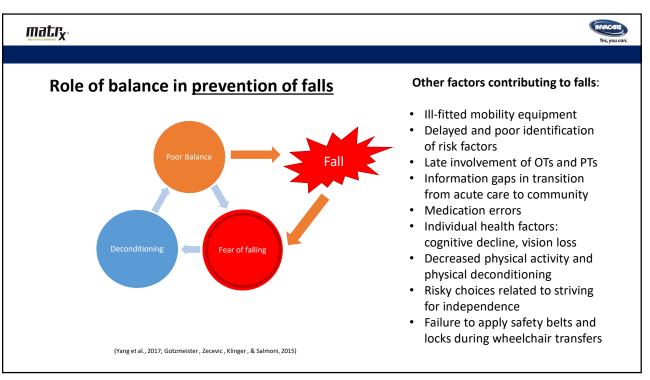


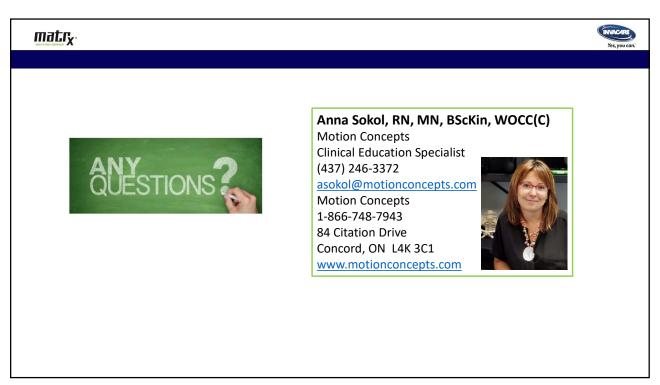



	Yes, you co
	Case study: Mr. Singh
	Addressing fear of falling
	Mr. Singh is 92 years old
	5 unexplained falls within 6 months
	Refusal to mobilize due to fear of falling
	Admitted to the hospital with failure to thrive
	Treated for multiple blood clots in lower limbs, PE, and diabetes.
	After 2 months, d/c to LTC with extreme muscle wasting, frailty, urinary incontinence
	Referred to the ADP-prescriber for a wheelchair (2 week wait)
Do not du	plicate or distribute without written permission from Motion Concepts, LP 48

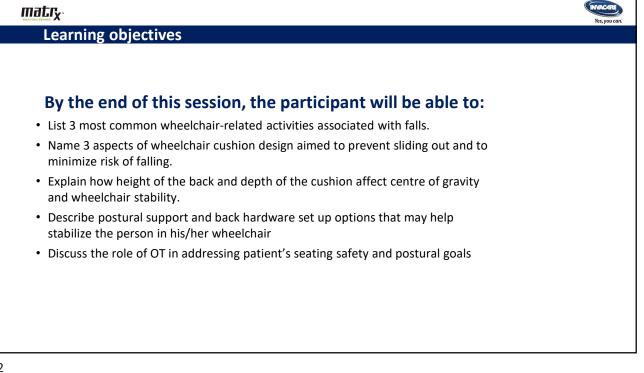
matr _x . I _X .	Yes, you can:
	Case study: Mr. Singh November 21: LTC home provided a loaner lightweight manual chair with rigid contoured back air cushion no seat cushion rigidizer Mr. Singh was sliding forward due to seat-to-floor too high
	After 1 week of trying, physiotherapy team requested a consult: - Mr. Singh was not getting up or propelling the wheelchair - wasn't communicating
Do not duplica	te or distribute without written permission from Motion Concepts, LP 49

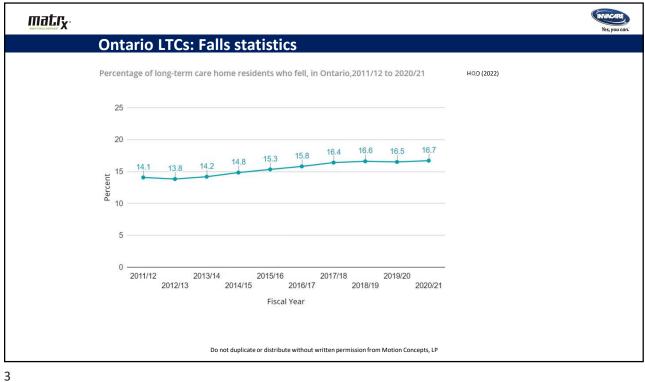

matr_x r_x


Case study: Mr. Singh

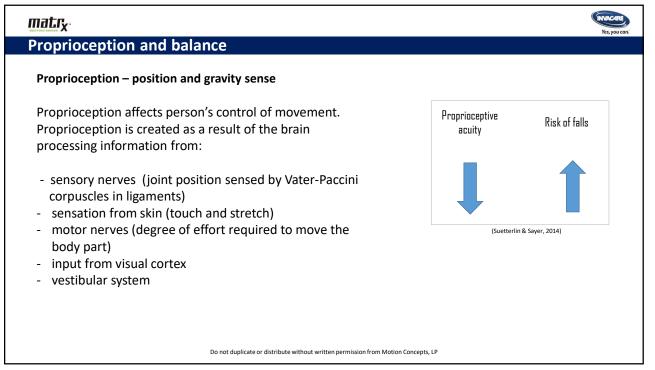

Seating products that worked:

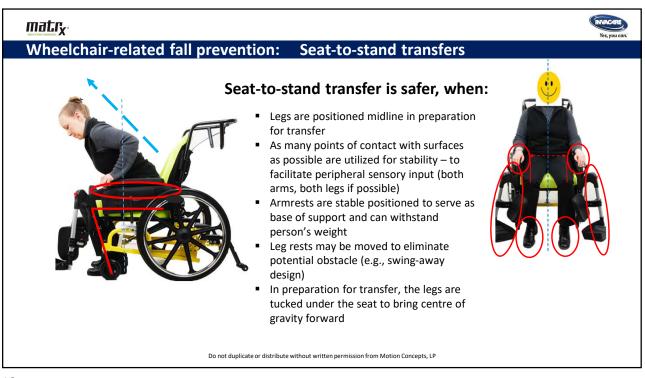
- Proper size (18") w/c frame
- Stable skin protection & positioning cushion (1818)
- Gently contoured back 1" wider than chair frame (1918)
- Head support with adjustable mounting hardware

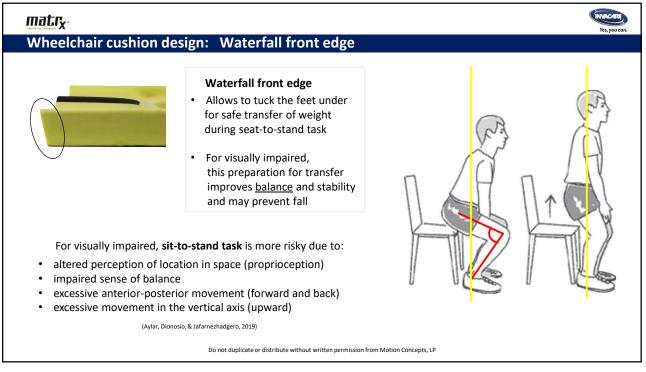


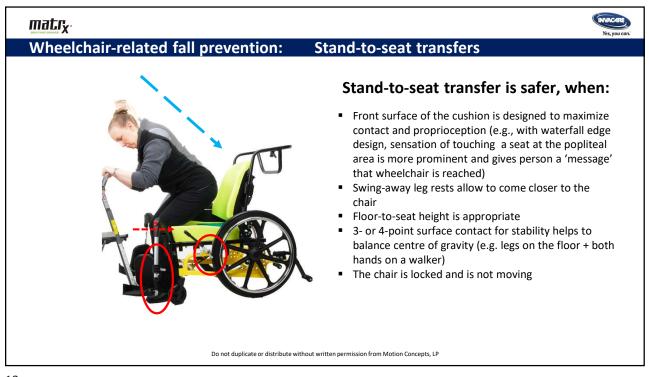


matrx	Yes, you can:	
References:		
 Aissaoui, R., Boucher, C., Bourbonnais, D., Lacoste, M., & Dansereau, J. (2001). Effect of seat cushion on dynamic stability in sitting during a reaching task in wheelchair users with paraplegia. Archives of Physical M 82, 274-281. doi: 10.1053/apmr.2001.19473 	ledicine and Rehabilitation,	
• Aylar, M. F., Dionosio, V. C. & Jafarnezhadgero, A. A. (2019). Do the centre of mass strategies change with restricted vision during the sit-to stand task? Clinical Biomechanics, 62, 104-112.		
 Erickson, B., Hosseini, M. A., Mudhar, P. S., Soleimani, M., Aboonabi, A., Arzanpour, S., & Sparrey, C. J. (2016). The dynamics of electric powered wheelchair sideways tips and falls: experimental and computationa and injury. Journal of Neuro Engineering and Rehabilitation, 13(20). doi: 10.1186/s12984-016-0128-7 	al analysis of impact forces	
 Forslund, E.B., Jorgensen, V., Franzen, E., Opheim, A., et al. (2017). High incidence of falls and fall-related injuries in wheelchair users with spinal cord injury: a prospective study of risk indicators. Journal of Rehabi 151. doi: 10.2340/16501977-2177 	litation Medicine, 49, 144-	
 Gotzmeister, D., Zecevic, A. A., Klinger, L., & Salmoni, A. (2015). "People are getting lost a little bit": systemic factors that contribute to falls in community-dwelling octogenarians. Canadian Journal of Aging, 34(3), 10.1017/S071498081500015X 	397-410. doi:	
 Haibach, P., Slobounov, S., & Newell, K. (2009). Egomotion and vection in young and elderly adults. Gerontology, 55(6), 637–643. https://doi.org/10.1159/000235816 		
HQO (Health Quality Ontario). (2022). Long-Term Care Home Performance: Falls. https://www.hqontario.ca/System-Performance/Long-Term-Care-Home-Performance/Falls		
 HQO (Health Quality Ontario). (2017). Insights into Quality Improvement: Home care Impressions and observations: 2016/2017 Quality Improvement Plans. Retrieved January 6, 2020, from: http://www.hqontario.ca/Portals/0/documents/qi/qip/analysis-home-care-2016-17-en.pdf 		
 Jang, E. M., Kim, MH., Yoo, W. G. (2014). Comparison of the tibialis anterior and soleus muscles activities during the sit-to-stand movement with hip adduction and hip abduction in elderly females. Journal of Phy 1045-7. doi: 10.1589/jpts.26.1045 	sical Therapy Science, 26(7),	
• Karnath, HO., & Broetz, D. (2003). Understanding and treating "pusher syndrome." Physical Therapy, 83(12), 1119–1125. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=mdc&AN=1464	0870&site=ehost-live	
 Kirby, R. L., Ackroyd-Stolarz, S. A., Brown, M. G., Kirkland, S. A., & MacLeod, D. A. (1994). Wheelchair-related accidents caused by tips and falls among noninstitutionalized users of manually propelled wheelchairs i Journal Of Physical Medicine & Rehabilitation, 73(5), 319-330. 	in Nova Scotia. American	
• Nishio, R., Yohei, I., Morita Y., Ito, T., Yamazaki, K., & Sakai, Y. (2019). Investigation of the functional decline in proprioceptors for low back pain using the sweep frequency. Applied Science, 9, 4988. doi:10.3390/ap	p9234988	
Okunribido, O. O. (2013). Patient safety during assistant propelled wheelchair transfers: the effect of the seat cushion on risk of falling. Assistive Technology, 25, 1-8. doi: 10.1080/10400435.2012.680658		
 Suetterlin, K. J. & Sayer, A. A. (2014). Proprioception: where are we now? A commentary in clinical assessment, changes across the life course, functional implications and future interventions. Age Ageing, 43(3), 3 10.1093/ageing/aft174 	13-318. doi:	
 Toosizadeh, N., Ehsani, H., Miramonte, M., & Mohler, J. (2018). Proprioceptive impairments in high fall risk older adults: the effect of mechanical calf vibration on postural balance. Biomedical Engineering Online, 3 018-0482-8 	17:51.doi: 10.1186/s12938-	
• Varriano, B., Sulway, S., Wetmore, C., Dillon, W., Misquitta, K., Multani, N., & Rutka, J. (2021). Prevalence of cognitive and vestibular impairments in seniors experiencing fails. Canadian Journal of Neurological S	ciences , 48(2), 245 – 252.	
doi: https://doi.org/10.1017/cjn.2020.154		
 Vermette, MJ., Prince, F., Bherer, L., & Messier, J. (2019). Interaction between proprioceptive sensitivity and the attentional demand for dynamic postural control in sedentary seniors: A pilot study. Neurophysilo 426. doi: 10.1016/j.neucl.2019.10.047 	ologie Clinique, 49(6), 423-	
 Yang, K. S., van Schooten, J. Sims-Gould, H. A. McKay, F. Feldman, & S. N. Robinovitch. (2017). Sex differences in the circumstances leading to falls: Evidence from real-life falls captured on video in long-term care Medical Directors Association, 1-6. doi: 10.1016/j.jamda.2017.08.011 	Journal of the American	
 Yap L. K., Au, S. Y., Ang., Y. H., & Ee C. H. (2003). Nursing home falls: a local perspective. Annals of the Academy of Medicine, Singapore, 32(6), 795 – 800. 		




Falls captured on video in long-ter	rm care (Yang et al., 202	7)
Activity at time of fall	Number of falls (%	
	Men (N=231)	Women (N=298)
Walking	29.2	40.3
Standing	25.0	23.8
Sitting down or lowering	15.9	14.3
Seated or wheeling	15.5	11.5
Getting up or rising	14.4	10.2
Slip	0.9	0.9


British Columbia LTC falls study: How do pe	ople fall?		
Falls captured on video in long-term care (N=529) (Yang et al., 2017)			
 Falls while getting up 40% were associated with moving objects and loss of suppor most often due to 	rt Number of falls suf	fered:	
incorrect shift of body weight or			
excessive sway of the trunk	Number of falls	% of participants (N=529	
	1	46 %	
	2	20 %	
Falls while seated	3	10 %	
 most often due to loss of support associated with 	4	6%	
moving object (60%) or	5 or more	18 %	
sliding out of a chair (40%)			



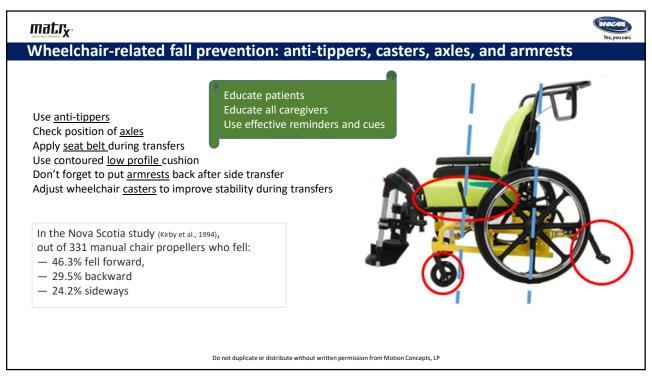
oprioception: Why is incorrect shift o	r body weight so common in seniors?
Proprioception is <u>worsened</u> with:	Proprioception is <i>improved</i> with:
 Aging (changes in muscles and nerves) Visual changes Surgical interventions in joints Arthritis or other pathological changes Injections into the joints Neuropathy Prolonged vibration Immediately after intensive exercise Spatial neglect or 'pusher syndrome' (changes in processing visual input after CVA/strokes) Iow back pain 	 Improvements in vision Regular balance training on unstable surface Short-term vibration Sensation of touching a surface/object 3-point or 4-point surface contact (e.g. back of the legs + both hands on armrests) Balanced posture of the trunk
 Low back pain (reliance on trunk proprioception with decline of proprioception in legs) Simultaneous demand for cognitive attention to dynamic postural control 	(Haibach, Slobounov, & Newell, 2009; Karnath & Broetz, 2003; Nishio et al., 2019; Toosizadeh, Ehsani, Miramonte, & Mohler, 2018; Vermette et al., 2019)

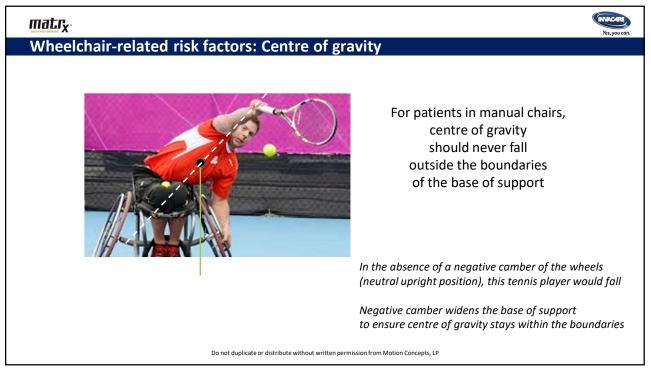
Falling while being seated or wheeled: sliding out of the wheelchair Posture – related? Wheelchair – related? Wheelchair seating - related? Image: Comparison of the seating - related?

Or all the above?

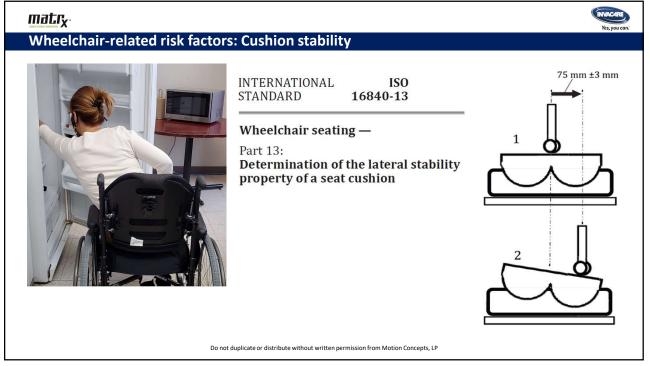
matrx

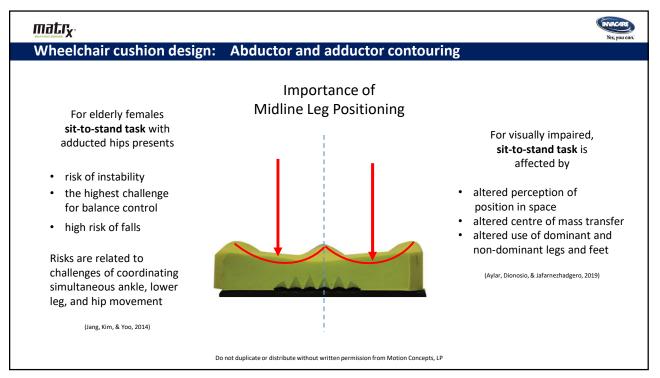
- 1. Assess patient (mat assessment)
- Assess the wheelchair
 Start from the seat, then look at the back, then the
- rest of the wheelchair system
 Change one thing a time and assess postural changes

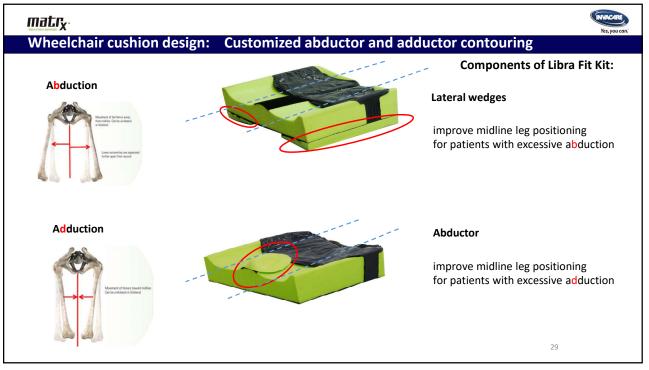


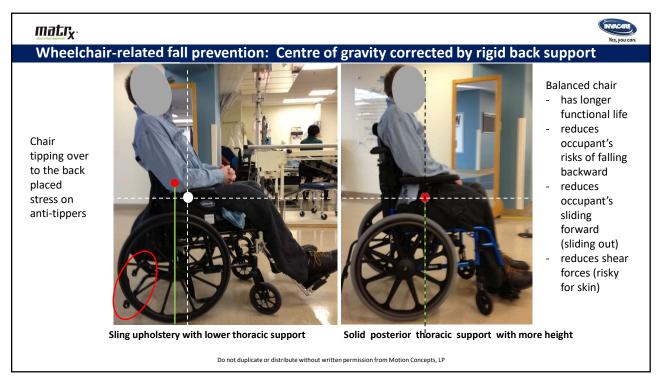


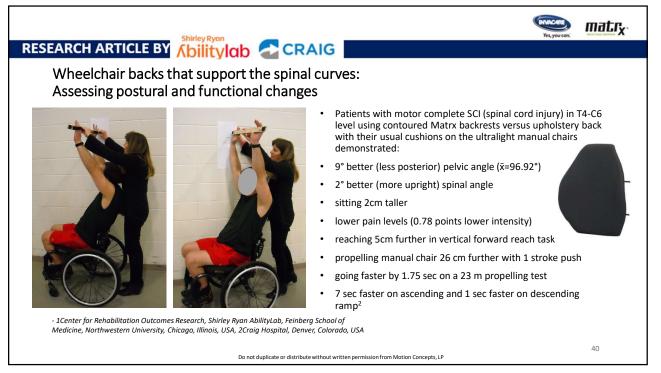


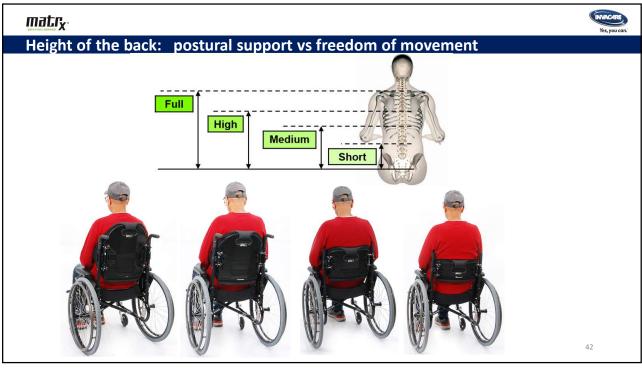


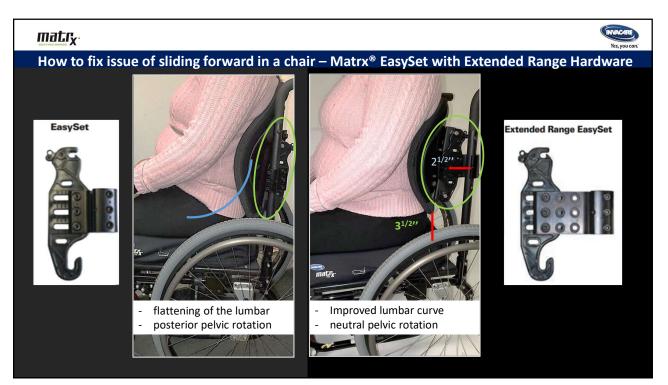


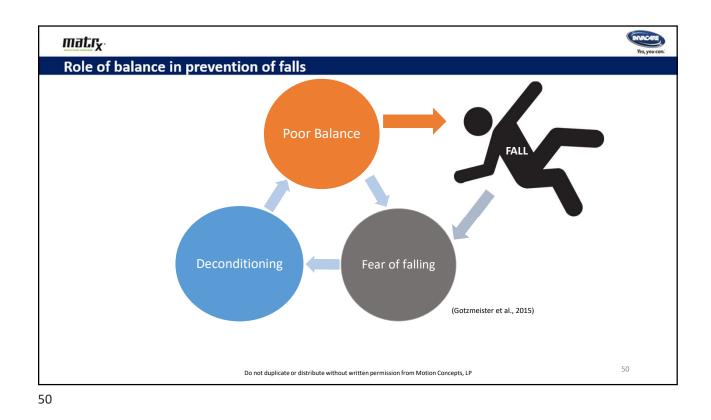


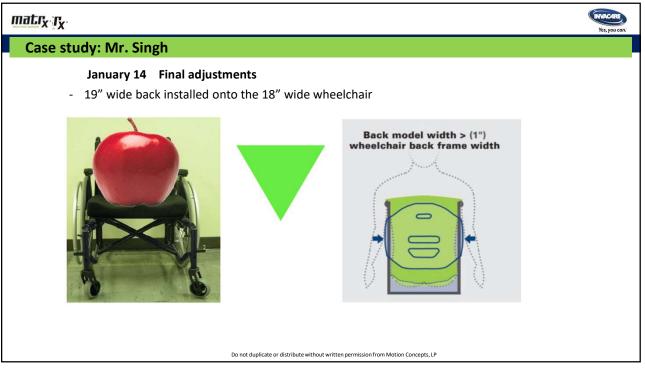




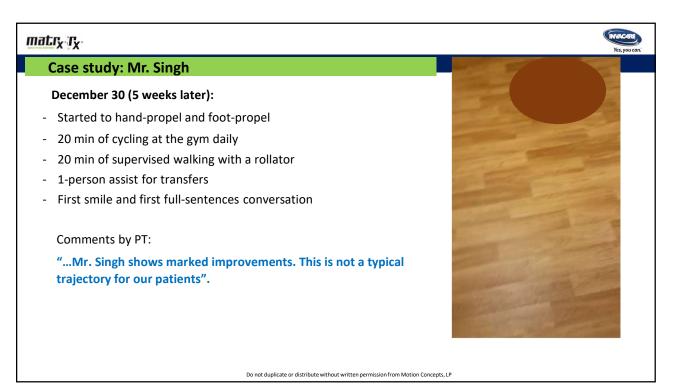


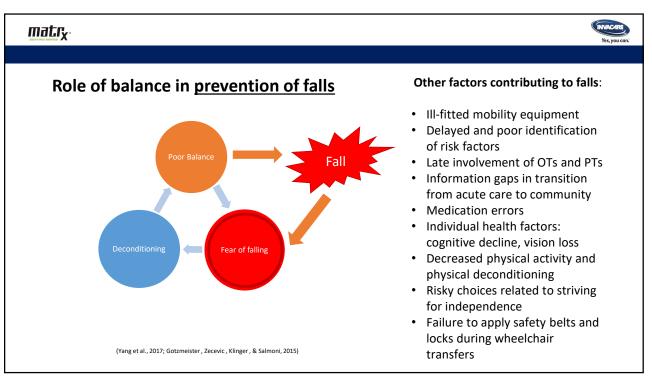


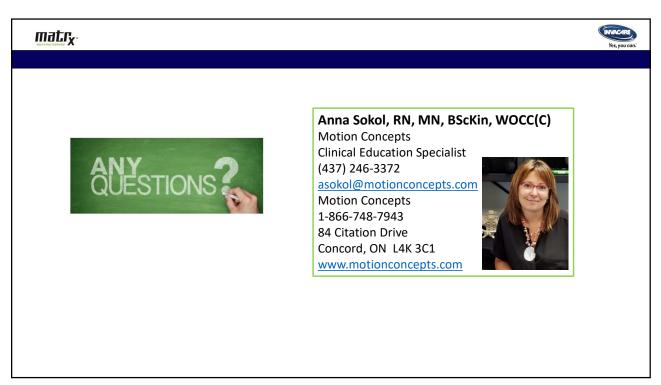



Case study: Mr. Singh Addressing fear of falling • Mr. Singh is 92 years old
Mr. Singh is 92 years old
 5 unexplained falls within 6 months
Refusal to mobilize due to fear of falling
Admitted to the hospital with failure to thrive
 Treated for multiple blood clots in lower limbs, PE, and diabetes.
 After 2 months, d/c to LTC with extreme muscle wasting, frailty, urinary incontinence
Referred to the ADP-prescriber for a wheelchair (2 week wait)
distribute without written permission from Motion Concepts, LP 48
1

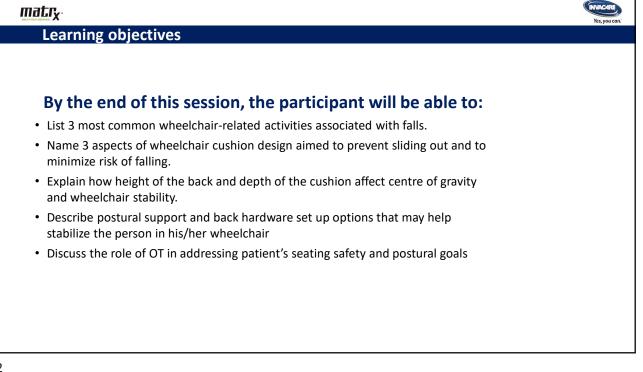
matr _x .T _x .	Yes, you can:
	Case study: Mr. Singh November 21: LTC home provided a loaner lightweight manual chair with rigid contoured back air cushion no seat cushion rigidizer Mr. Singh was sliding forward due to seat-to-floor too high After 1 week of trying, physiotherapy team requested a consult: Mr. Singh was not getting up or propelling the wheelchair Wasn't communicating
Do not duplicate	e or distribute without written permission from Motion Concepts, LP 4-2

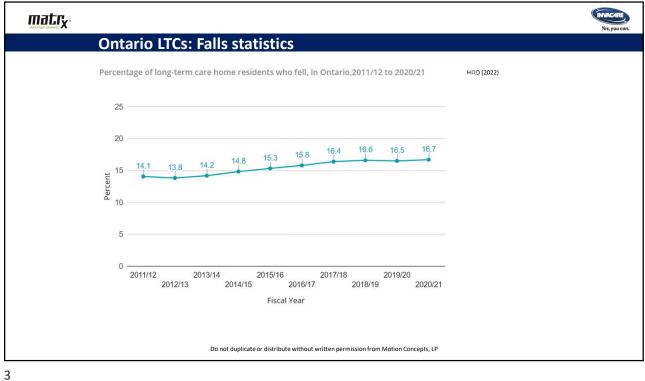

matr_x r_x


Case study: Mr. Singh

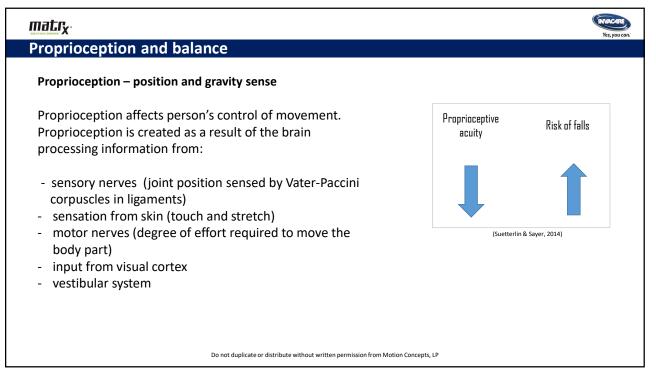

Seating products that worked:

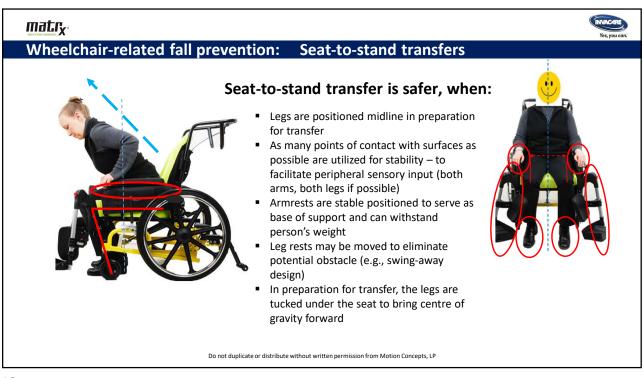
- Proper size (18") w/c frame
- Stable skin protection & positioning cushion (1818)
- Gently contoured back 1" wider than chair frame (1918)
- Head support with adjustable mounting hardware

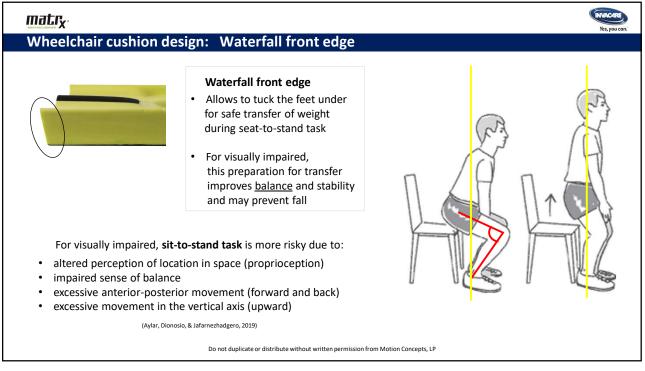


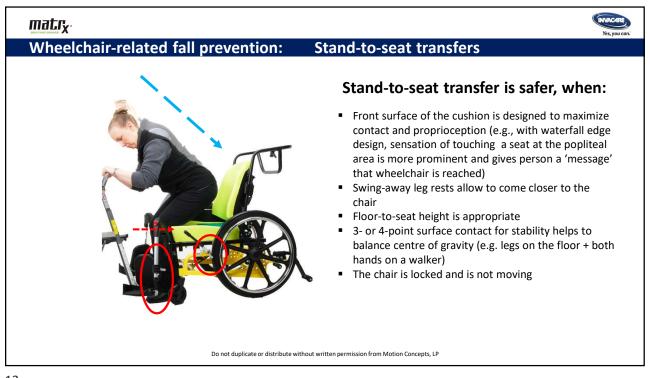


References:					
•	Alssaoui, R., Boucher, C., Bourbonnais, D., Lacoste, M., & Dansereau, J. (2001). Effect of seat cushion on dynamic stability in sitting during a reaching task in wheelchair users with paraplegia. Archives of Physical Medicine and Rehabilitation, 82, 274-281. doi: 10.1053/apmr.2001.19473				
•	Aylar, M. F., Dionosio, V. C. & Jafarnezhadgero, A. A. (2019). Do the centre of mass strategies change with restricted vision during the sit-to stand task? Clinical Biomechanics, 62, 104-112.				
•	Erickson, B., Hosseini, M. A., Mudhar, P. S., Soleimani, M., Aboonabi, A., Arzanpour, S., & Sparrey, C. J. (2016). The dynamics of electric powered wheelchair sideways tips and falls: experimental and computational analysis of impact forces and injury. Journal of Neuro Engineering and Rehabilitation, 13(20). doi: 10.1186/s12984-016-0128-7				
•	Forslund, E.B., Jorgensen, V., Franzen, E., Opheim, A., et al. (2017). High incidence of falls and fall-related injuries in wheelchair users with spinal cord injury: a prospective study of risk indicators. Journal of Rehabilitation Medicine, 49, 144- 151. doi: 10.2340/16501977-2177				
·	Gotzmeister, D., Zecevic, A. A., Klinger, L., & Salmoni, A. (2015). "People are getting lost a little bit": systemic factors that contribute to falls in community-dwelling octogenarians. Canadian Journal of Aging, 34(3), 397-410. doi: 10.1017/S071498081500015X				
•	Haibach, P., Slobounov, S., & Newell, K. (2009). Egomotion and vection in young and elderly adults. Gerontology, 55(6), 637–643. https://doi.org/10.1159/000235816				
•	HQO (Health Quality Ontario). (2022). Long-Term Care Home Performance: Falls. https://www.hqontario.ca/System-Performance/Long-Term-Care-Home-Performance/Falls				
•	HQO (Health Quality Ontario). (2017). Insights into Quality Improvement: Home care Impressions and observations: 2016/2017 Quality Improvement Plans. Retrieved January 6, 2020, from: http://www.hqontario.ca/Portals/0/documents/qi/qip/analysis-home-care-2016-17-en.pdf				
•	Jang, E. M., Kim, MH., Yoo, W. G. (2014). Comparison of the tibialis anterior and soleus muscles activities during the sit-to-stand movement with hip adduction and hip abduction in elderly females. Journal of Physical Therapy Science, 26(7), 1045-7. doi: 10.1589/jpts.26.1045				
•	Karnath, HO., & Broetz, D. (2003). Understanding and treating "pusher syndrome." Physical Therapy, 83(12), 1119–1125. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=mdc&AN=14640870&site=ehost-live				
•	Kirby, R. L., Ackroyd-Stolarz, S. A., Brown, M. G., Kirkland, S. A., & MacLeod, D. A. (1994). Wheelchair-related accidents caused by tips and falls among noninstitutionalized users of manually propelled wheelchairs in Nova Scotia. American Journal Of Physical Medicine & Rehabilitation, 73(5), 819-330.				
•	Nishio, R., Yohei, I., Morita Y., Ito, T., Yamazaki, K., & Sakai, Y. (2019). Investigation of the functional decline in proprioceptors for low back pain using the sweep frequency. Applied Science, 9, 4988. doi:10.3390/app9234988				
•	Okunribido, O. O. (2013). Patient safety during assistant propelled wheelchair transfers: the effect of the seat cushion on risk of falling. Assistive Technology, 25, 1-8. doi: 10.1080/10400435.2012.680658				
•	Suetterlin, K. J. & Sayer, A. A. (2014). Proprioception: where are we now? A commentary in clinical assessment, changes across the life course, functional implications and future interventions. Age Ageing, 43(3), 313-318. doi: 10.1093/ageing/aft174				
•	Toosizadeh, N., Ehsani, H., Miramonte, M., & Mohler, J. (2018). Proprioceptive impairments in high fall risk older adults: the effect of mechanical calf vibration on postural balance. Biomedical Engineering Online, 17:51.doi: 10.1186/s12938-018-0482-8				
•	Varriano, B., Sulway, S., Wetmore, C., Dillon, W., Misquitta, K., Multani, N., & Rutka, J. (2021). Prevalence of cognitive and vestibular impairments in seniors experiencing falls. Canadian Journal of Neurological Sciences, 48(2), 245 – 252.				
•	doi: https://doi.org/10.1017/cjn.2020.154				
•	Vermette, MJ., Prince, F., Bherer, L., & Messier, J. (2019). Interaction between proprioceptive sensitivity and the attentional demand for dynamic postural control in sedentary seniors: A pilot study. Neurophysilologie Clinique, 49(6), 423-426. doi: 10.1016/j.neucl.2019.10.047				
•	Yang, K. S., van Schooten, J. Sims-Gould, H. A. McKay, F. Feldman, & S. N. Robinovitch. (2017). Sex differences in the circumstances leading to falls: Evidence from real-life falls captured on video in long-term care. Journal of the American Medical Directors Association, 1-6. doi: 10.1016/j.jamda.2017.08.011				
•	Yap L. K., Au, S. Y., Ang., Y. H., & Ee C. H. (2003). Nursing home falls: a local perspective. Annals of the Academy of Medicine, Singapore, 32(6), 795 – 800.				




	rured on video in long-term care (Yang et al., 2017)			
Activity at time of fall	Number of falls (%)			
	Men (N=231)	Women (N=298)		
Walking	29.2	40.3		
Standing	25.0	23.8		
Sitting down or lowering	15.9	14.3		
Seated or wheeling	15.5	11.5		
Getting up or rising	14.4	10.2		
Slip	0.9	0.9		


E	British Columbia LTC falls study: How do pe	ople fall?	
F	alls captured on video in long-term care (N=52	29) et al., 2017)	
	Falls while getting up 40% were associated with moving objects and loss of support	t	
-	most often due to	Number of falls suf	fered:
	incorrect shift of body weight or		
	excessive sway of the trunk	Number of falls	% of participants (N=529
		1	46 %
	alls while seated	2	20 %
r		3	10 % 6 %
-	most often due to loss of support associated with	5 or more	18%
	moving object (60%) or	5 of more	10 /0
	sliding out of a chair (40%)		



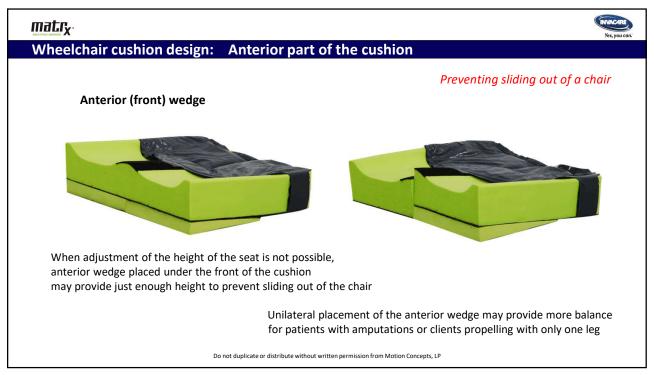
Proprioception: Why is incorrect shift of body weight so common in seniors?			
Proprioception is <u>worsened</u> with:	Proprioception is <i>improved</i> with:		
 Aging (changes in muscles and nerves) Visual changes Surgical interventions in joints Arthritis or other pathological changes Injections into the joints Neuropathy Prolonged vibration Immediately after intensive exercise Spatial neglect or 'pusher syndrome' (changes in processing visual input after CVA/strokes) Low back pain 	 Improvements in vision Regular balance training on unstable surface Short-term vibration Sensation of touching a surface/object 3-point or 4-point surface contact (e.g. back of the legs + both hands on armrests) Balanced posture of the trunk 		
 Low back pain (reliance on trunk proprioception with decline of proprioception in legs) Simultaneous demand for cognitive attention to dynamic postural control 	(Haibach, Slobounov, & Newell, 2009; Karnath & Broetz, 2003; Nishio et al., 2019; Toosizadeh, Ehsani, Miramonte, & Mohler, 2018; Vermette et al., 2019)		

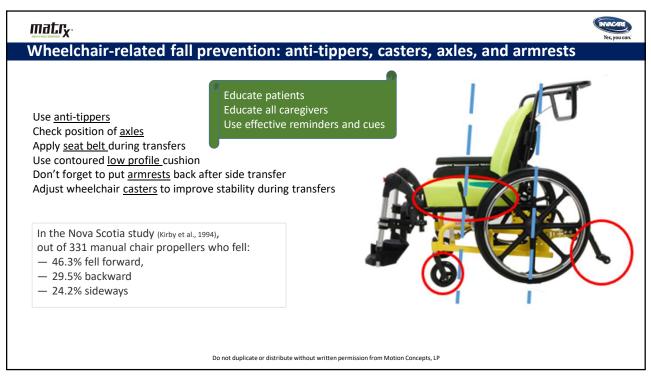
Falling while being seated or wheeled: sliding out of the wheelchair Posture – related? Wheelchair – related? Wheelchair seating - related? Image: Comparison of the wheelchair

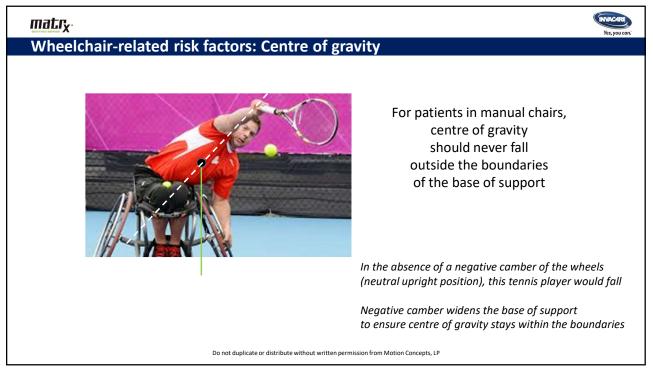
Or all the above?

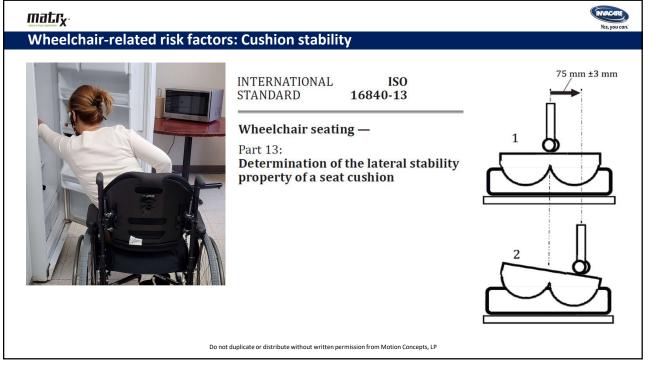
matrx

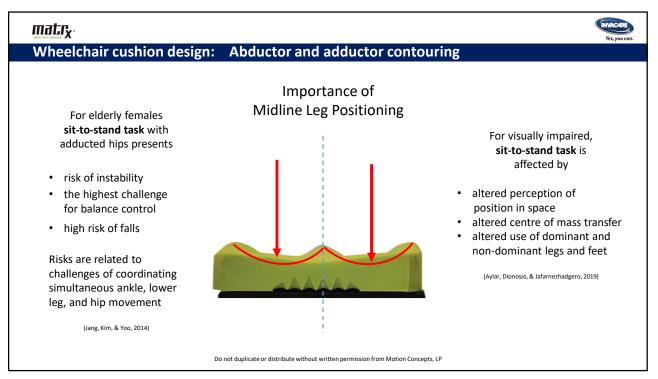
- 1. Assess patient (mat assessment)
- Assess the wheelchair
 Start from the seat, then look at the back, then the rest of the wheelchair system
- Change one thing a time and assess postural changes

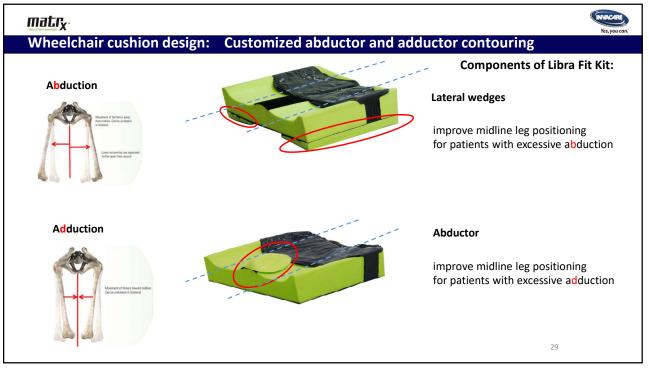


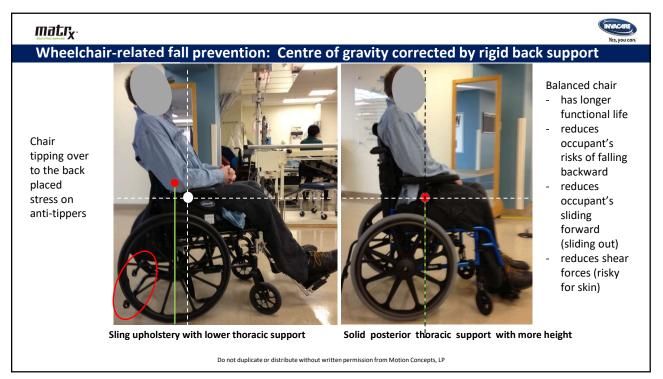


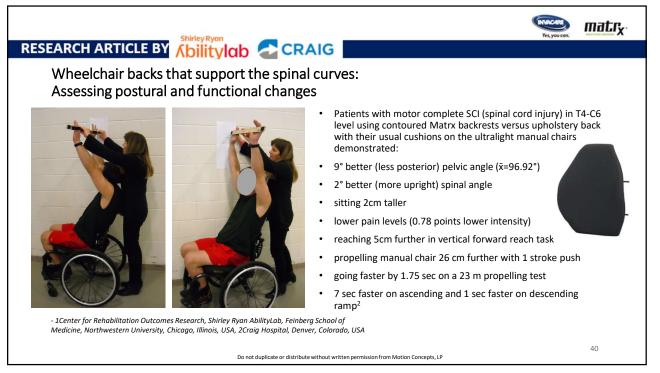


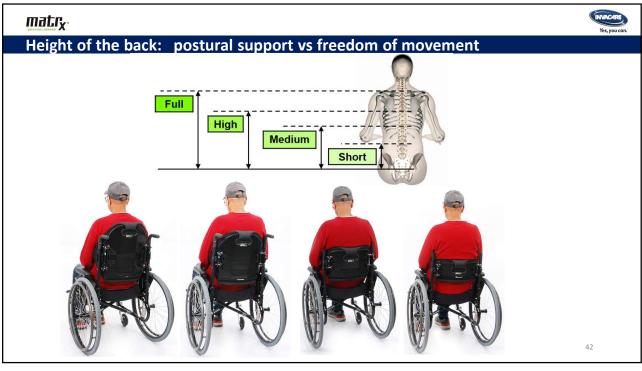


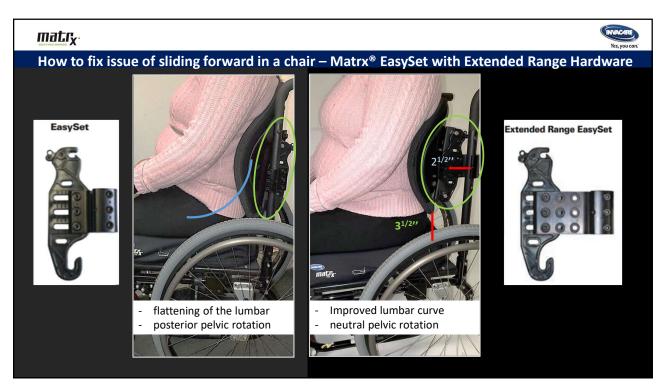


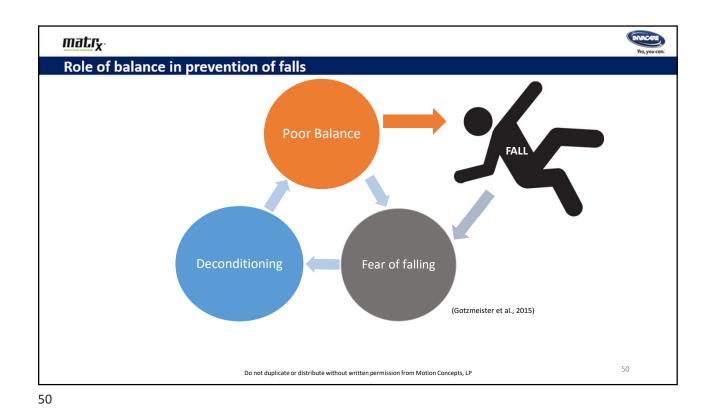


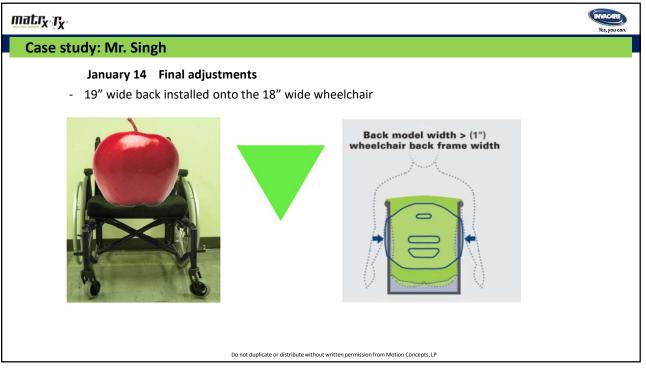




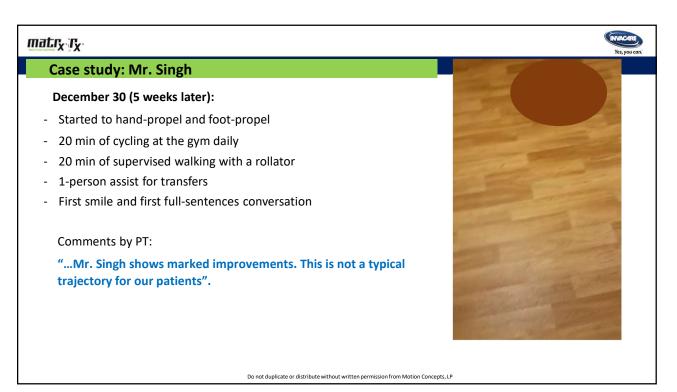


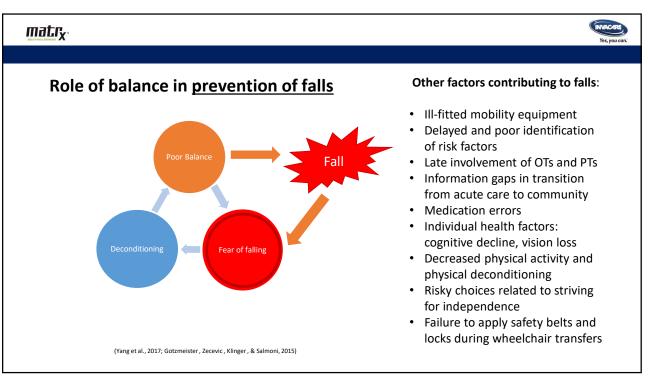


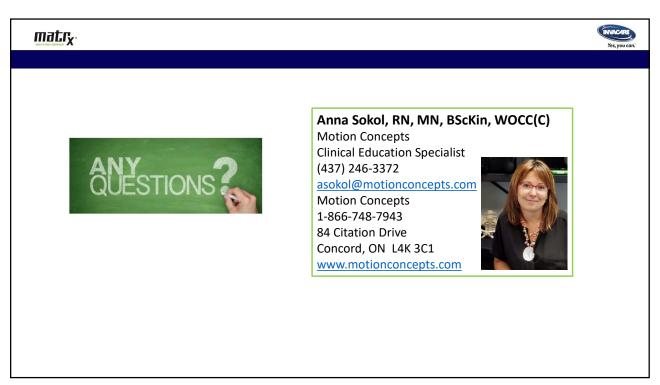



matr _x r _x	Yes, you can.
	Case study: Mr. Singh
	Addressing fear of falling
	• Mr. Singh is 92 years old
	• 5 unexplained falls within 6 months
	Refusal to mobilize due to fear of falling
	Admitted to the hospital with failure to thrive
	• Treated for multiple blood clots in lower limbs, PE, and diabetes.
	 After 2 months, d/c to LTC with extreme muscle wasting, frailty, urinary incontinence
	Referred to the ADP-prescriber for a wheelchair (2 week wait)
Do not duplicate	or distribute without written permission from Motion Concepts, LP 48

matr _x .T _x	Yes, you can:
<image/>	 Case study: Mr. Singh November 21: LTC home provided a loaner lightweight manual chair with rigid contoured back air cushion no seat cushion rigidizer Mr. Singh was sliding forward due to seat-to-floor too high After 1 week of trying, physiotherapy team requested a consult: Mr. Singh was not getting up or propelling the wheelchair wasn't communicating
Do not duplicate	e or distribute without written permission from Motion Concepts, LP 49


matr_x r_x


Case study: Mr. Singh


Seating products that worked:

- Proper size (18") w/c frame
- Stable skin protection & positioning cushion (1818)
- Gently contoured back 1" wider than chair frame (1918)
- Head support with adjustable mounting hardware

References:					
•	Aissaoul, R., Boucher, C., Bourbonnais, D., Lacoste, M., & Dansereau, J. (2001). Effect of seat cushion on dynamic stability in sitting during a reaching task in wheelchair users with paraplegia. Archives of Physical Medicine and Rehabilitation, 82, 274-281. doi: 10.1053/apmr.2001.19473				
•	Aylar, M. F., Dionosio, V. C. & Jafarnezhadgero, A. A. (2019). Do the centre of mass strategies change with restricted vision during the sit-to stand task? Clinical Biomechanics, 62, 104-112.				
•	Erickson, B., Hosseini, M. A., Mudhar, P. S., Soleimani, M., Aboonabi, A., Arzanpour, S., & Sparrey, C. J. (2016). The dynamics of electric powered wheelchair sideways tips and falls: experimental and computational analysis of impact forces and injury. Journal of Neuro Engineering and Rehabilitation, 13(20). doi: 10.1186/s12984-016-0128-7				
•	Forslund, E.B., Jorgensen, V., Franzen, E., Opheim, A., et al. (2017). High incidence of falls and fall-related injuries in wheelchair users with spinal cord injury: a prospective study of risk indicators. Journal of Rehabilitation Medicine, 49, 144- 151. doi: 10.2340/16501977-2177				
•	Gotzmeister, D., Zecevic, A. A., Klinger, L., & Salmoni, A. (2015). "People are getting lost a little bit": systemic factors that contribute to fails in community-dwelling octogenarians. Canadian Journal of Aging, 34(3), 397-410. doi: 10.1017/S071498081500015X				
•	Haibach, P., Slobounov, S., & Newell, K. (2009). Egomotion and vection in young and elderly adults. Gerontology, 55(6), 637–643. https://doi.org/10.1159/000235816				
•	HQO (Health Quality Ontario). (2022). Long-Term Care Home Performance: Falls. https://www.hqontario.ca/System-Performance/Long-Term-Care-Home-Performance/Falls				
•	HQO (Health Quality Ontario). (2017). Insights into Quality Improvement: Home care Impressions and observations: 2016/2017 Quality Improvement Plans. Retrieved January 6, 2020, from: http://www.hqontario.ca/Portals/0/documents/qi/qip/analysis-home-care-2016-17-en.pdf				
•	Jang, E. M., Kim, MH., Yoo, W. G. (2014). Comparison of the tibialis anterior and soleus muscles activities during the sit-to-stand movement with hip adduction and hip abduction in elderly females. Journal of Physical Therapy Science, 26(7), 1045-7. doi: 10.1589/jpts.26.1045				
•	Karnath, HO., & Broetz, D. (2003). Understanding and treating "pusher syndrome." Physical Therapy, 83(12), 1119–1125. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=mdc&AN=14640870&site=ehost-live				
•	Kirby, R. L., Ackroyd-Stolarz, S. A., Brown, M. G., Kirkland, S. A., & MacLeod, D. A. (1994). Wheelchair-related accidents caused by tips and falls among noninstitutionalized users of manually propelled wheelchairs in Nova Scotia. American Journal Of Physical Medicine & Rehabilitation, 73(5), 319-330.				
·	Nishio, R., Yohei, I., Morita Y., Ito, T., Yamazaki, K., & Sakai, Y. (2019). Investigation of the functional decline in proprioceptors for low back pain using the sweep frequency. Applied Science, 9, 4988. doi:10.3390/app9234988				
•	Okunribido, O. O. (2013). Patient safety during assistant propelled wheelchair transfers: the effect of the seat cushion on risk of falling. Assistive Technology, 25, 1-8. doi: 10.1080/10400435.2012.680658				
•	Suetterlin, K. J. & Sayer, A. A. (2014). Proprioception: where are we now? A commentary in clinical assessment, changes across the life course, functional implications and future interventions. Age Ageing, 43(3), 313-318. doi: 10.1093/ageing/aft174				
•	Toosizadeh, N., Ehsani, H., Miramonte, M., & Mohler, J. (2018). Proprioceptive impairments in high fall risk older adults: the effect of mechanical calf vibration on postural balance. Biomedical Engineering Online, 17:51.doi: 10.1186/s12938-018-0482-8				
•	Varriano, B., Sulway, S., Wetmore, C., Dillon, W., Misquitta, K., Multani, N., & Rutka, J. (2021). Prevalence of cognitive and vestibular impairments in seniors experiencing falls. Canadian Journal of Neurological Sciences, 48(2), 245 – 252.				
•	doi: https://doi.org/10.1017/cjn.2020.154				
•	Vermette, MJ., Prince, F., Bherer, L., & Messier, J. (2019). Interaction between proprioceptive sensitivity and the attentional demand for dynamic postural control in sedentary seniors: A pilot study. Neurophysilologie Clinique; 49(6), 423- 426. doi: 10.1016/j.neucl.2019.10.047				
•	Yang, K. S., van Schooten, J. Sims-Gould, H. A. McKay, F. Feldman, & S. N. Robinovitch. (2017). Sex differences in the circumstances leading to falls: Evidence from real-life falls captured on video in long-term care. Journal of the American Medical Directors Association, 1-6. doi: 10.1016/j.jamda.2017.08.011				
·	Yap L. K., Au, S. Y., Ang., Y. H., & Ee C. H. (2003). Nursing home falls: a local perspective. Annals of the Academy of Medicine, Singapore, 32(6), 795 – 800.				